Что такое пенобетон: что это такое и в чём его преимущества и недостатки

Содержание

что это такое и в чём его преимущества и недостатки

Легкие бетоны с пористой структурой применяются в строительной сфере для возведения частных домов, хозяйственных строений, а также промышленных и коммерческих объектов. Среди множества стройматериалов застройщики часто выбирают пенобетон. Он производится по специальной технологии, предусматривающей введение в бетонную смесь пенообразующих ингредиентов. Из рабочей смеси изготавливают пеноблоки. Они обладают достаточной прочностью и высокими теплоизоляционными свойствами. Остановимся на особенностях, классификации и свойствах пенобетонных композитов.

Какие особенности имеет пенобетон

Пористый бетон, полученный путем добавления пенообразующих ингредиентов в предварительно перемешанный цементно-песчаный раствор, после застывания и набора эксплуатационной прочности, приобретает характерную структуру.

Материал обладает рядом особенностей:

Пенобетон, разновидность ячеистого бетона

  • неоднородным распределением в пенобетонном массиве воздушных ячеек. Неравномерное размещение пор незначительно снижает прочность;
  • стабильным размером полостей, не превышающим 0,4–0,5 см. Постоянство размеров достигается путем тщательного перемешивания пенообразователя;
  • концентрацией пор, не превышающей 75% от объема пенобетонного массива. Благодаря ячеистой структуре снижается удельный вес;
  • замкнутой формой воздушных полостей. Герметичные ячейки повышают стойкость пенобетонных изделий к поглощению влаги.

Наличие внутренних ячеек благоприятно сказывается на паропроницаемости стройматериала, а также его теплоизоляционных показателях.

Пеноблоки – что это?


Изделия, изготовленные из пенобетонных композитов, востребованы в области частного домостроения. Большинство застройщиков сталкивалось с популярным стройматериалом и имеет представление о том, что такое пеноблок. Для тех, кто не знаком с материалом, сообщаем, что пенобетонные блоки представляют собой изделия, полученные в результате твердения в формовочных емкостях вспененного цементного раствора. Различные виды блоков имеют индивидуальные характеристики и делятся на виды. Размеры пеноблоков соответствуют внутренним габаритам литейных форм.

Пеноблоки легко отличить по следующим признакам:

  • форме изделий – прямоугольный параллелепипед;
  • увеличенной шероховатости наружной поверхности;
  • серому цвету стройматериала (это связано с использованием цемента).

Кроме того, материал держится на поверхности воды, что легко проверить, погрузив обломок пеноблока в воду.

Пенобетон создается путем равномерного распределения пузырьков воздуха по всей массе бетона

Как классифицируются пенобетонные блоки

Концентрация внутренних полостей в пенобетонных блоках влияет на следующие моменты:

  • удельный вес изделия;
  • величину воспринимаемой нагрузки;
  • сферу применения пенобетона.

Классификация предусматривает следующее деление пенобетона на разновидности в зависимости от плотности материала:

  • теплоизоляционные пеноблоки. Они маркируются буквенно-цифровым обозначением D150-D400. Цифра в маркировке обозначает массу одного кубометра пенобетона, указанную в килограммах. По прочностным характеристикам материал классифицируется В0,75. Пенобетон данного класса способен воспринимать нагрузку на квадратный сантиметр площади, равную 9 кг. При этом сохраняется целостность массива и не образуются трещины;
  • теплоизоляционно-конструкционные бетонные блоки. По сравнению с теплоизоляционными блоками имеют увеличенную плотность и повышенные прочностные свойства. Маркируются обозначениями D500, D600, D700 и D800. Максимальная плотность конструкционно-теплоизоляционных блоков составляет 0,8 т/м3. Предельно допустимое усилие, при котором структура пенобетонных блоков не нарушается, составляет до 30 кг/см2;

Пенобетон является почти нестареющим и практически вечным материалом, не подверженным воздействию времени, не гниет, обладает прочностью камня

  • конструкционные изделия. К ним относятся пенобетонные материалы, маркируемые обозначением D1000, D1100 и D1200. Главная отличительная особенность конструкционных пеноблоков — увеличенная плотность. Вес одного кубического метра конструкционного пенобетона достигает 1200 кг, что позволяет материалу сохранять целостность под воздействием значительных нагрузок. Максимальный класс прочности пеноблоков составляет В12,5.

Повышенная концентрация внутренних полостей улучшает теплоизоляционные свойства пенобетона, а также положительно влияет на звукоизоляцию помещения. Прочностные свойства материала обратно пропорциональны объемной доле внутренних ячеек — в более прочном пенобетоне, применяемом для постройки несущих стен зданий, содержится уменьшенный объем воздушных пор.

Пенобетонные композиты используются на различных стадиях строительства дома. Характеристики материала влияют на особенности применения блоков. Ячеистая структура пенобетонного массива не позволяет возводить из блоков фундамент. Стены и перекрытия, а также внутренние перегородки и теплоизоляция сооружаются из различных видов пенобетона.

Конструкционный стройматериал применяется для следующих целей:

  • строительства коробок зданий, воспринимающих нагрузки от веса строения и кровельной конструкции;
  • постройки внутренних стен, относящихся к малонагруженным частям строения;
  • возведения межкомнатных перегородок, не воспринимающих вертикально направленные усилия.

Благодаря высокому термическому сопротивлению, здания из пенобетона способны аккумулировать тепло, что при эксплуатации позволяют снизить расходы на отопление на 20-30%

Теплоизоляционные блоки предназначены для утепления следующих частей здания:

  • межэтажных перекрытий, изготовленных из железобетона;
  • несущих стен коробки строения, контактирующих с холодным воздухом;
  • подкровельного пространства, являющегося источником тепловых потерь.

Характеристики теплоизоляционных пеноблоков позволяют применять их в технологических целях для теплоизоляции устройств, магистралей и оборудования, нагревающихся до 450-550 °С.

Теплоизоляционно-конструкционные пеноблоки объединяют свойства конструкционных и теплоизоляционных изделий, что позволяет использовать их для утепления фасада здания и возведения несущих стен. Дома из пеноблоков отличаются повышенными теплоизоляционными свойствами по сравнению со зданиями из кирпича. Для обеспечения прочности и снижения теплопотерь через поверхность стен желательно устанавливать блоки одинакового профиля.

Из чего изготавливается пенобетон

Для изготовления пенобетона применяются следующие компоненты:

  • портландцемент с маркировкой М400, являющийся вяжущим веществом. Применение цемента более высокой марки положительно влияет на свойства пенобетона;
  • речной песок, применяемый в качестве наполнителя. Замена речного песка керамзитными гранулами позволяет повысить теплоизоляционные свойства и прочность;

Он экологически чистый

  • пенообразующие ингредиенты. Используются в виде концентрата, приготовленного на основе костного клея, канифоли, желатина или протеиносодержащих компонентов;
  • теплая вода. Оптимальная температура воды, согласно требованиям технологического процесса, составляет 22–25 °С, а рекомендуемое соотношение с цементом – 1:2,5.

Соблюдение предусмотренного технологией состава и использование качественного сырья позволяет добиться требуемых эксплуатационных свойств пенобетона.

Специфика изготовления пенобетона

Для изготовления пенобетона используют различные способы:

  • классическую технологию. Она регламентирует необходимость применения пеногенератора, подающего пенообразователь по трубам в подготовленный цементно-песчаный состав. Рабочий раствор, перемешанный в смесителе с пенообразующим веществом, заливается в формовочные емкости или подается по трубам на участок работ. В процессе гидратации цемента пеноматериал застывает, образуя внутри массива пористую структуру. Набор твердости происходит в естественных температурных условиях, соответствующих состоянию окружающей среды;
  • поризационный метод. Название способа изготовления связано с применением специального агрегата — поризатора. Он обеспечивает ввод сухих компонентов в струю пенообразователя. Частицы цементно-песчаной смеси осаждаются на оболочке пенных пузырьков. В результате образуется рабочий пеноматериал, подаваемый по напорным магистралям к месту выполнения работ. Профессиональные строители называют поризационный способ изготовления пенобетона методом сухой минерализации. Он востребован в области промышленного строительства для постоянной подачи пенобетонной смеси.

Определяясь с методом изготовления пенобетона, изучите особенности каждого способа изготовления и выполните экономические расчеты.

Себестоимость пенобетона невысока

Преимущества пенобетона

Рассмотрим, какие имеют пеноблоки плюсы. Главные преимущества пенобетона:

  • повышенные теплоизоляционные свойства. Материал позволяет поддерживать комфортную температуру помещения и более чем в 2 раза превосходит по данному показателю кирпич;
  • уменьшенная плотность пеноблоков. Благодаря небольшому весу, облегчается транспортировка материала, ускоряется выполнение мероприятий по кладке стен, а также исключается необходимость сооружения мощного фундамента;
  • возможность применения пеноблоков для возведения несущих стен.

Характеристики пенобетона позволяют использовать материал для строительства зданий высотой до 9 м:

  • стойкость к влиянию низких температур. Пеноблоки не разрушаются в условиях перепадов температур и сохраняют структуру в результате глубокого замораживания с ускоренным оттаиванием;
  • устойчивость к воздействию открытого пламени и высокой температуры. Правильно изготовленный пенобетон не разрушается в условиях экстремальной ситуации;
  • экологическая чистота материала. Применение для изготовления пенобетона экологически чистого сырья исключает выделение в процессе эксплуатации вредных веществ;
  • возможность изготовления пенобетонных изделий небольшими предприятиями или непосредственно на стройплощадке. Простота технологии позволяет снизить сметную стоимость строительства;

Небольшая плотность, а следовательно и лёгкость пенобетона, большие размеры блоков по сравнению с кирпичом позволяют в несколько раз увеличить скорость кладки

  • продолжительный период использования. Пенобетон сохраняет структуру и рабочие характеристики независимо от продолжительности эксплуатации;
  • легкость механической обработки пеноблоков. Использование ручного электроинструмента позволяет легко выполнить в пенобетонном массиве пазы и отверстия или разрезать блок на части.

Ознакомившись с положительными свойствами материала, обратите внимание и на его слабые стороны.

Недостатки пенобетонных изделий

Разберемся, какие имеют пеноблоки минусы. Главные недостатки:

  • увеличенная усадка пенобетонного массива;
  • необходимость защиты пенобетона от поглощения влаги;
  • недостаточно высокие прочностные свойства;
  • восприимчивость к ударному воздействию и повышенным нагрузкам;
  • сложность использования стандартного крепежа для пористого материала.

Пенобетон требует бережного отношения при транспортировании, а также нуждается в хранении на складе. Изучив, какие имеют пеноблоки минусы и плюсы, можно сделать вывод о его пригодности для решения поставленных задач.

Рекомендации по выбору пенобетонных изделий

Специалисты рекомендуют обращать внимание на следующие моменты:

  • имидж предприятия-изготовителя;
  • отсутствие дефектов на поверхности;
  • правильную геометрию блоков.

Покупая пенобетонные блоки, проверьте соответствие характеристик блоков параметрам, указанным в сертификатах качества, а также обратите внимание на дату выпуска. Пенобетон можно применять не ранее, чем через месяц после изготовления.

Подводим итоги

Пенобетон обладает комплексом неоспоримых достоинств и дешевле, чем газобетон. Приняв решение использовать для постройки или утепления собственного дома пеноблоки или монолитный пенобетон, изучите свойства материала и проконсультируйтесь со специалистами. Они подскажут, что такое пескобетон, и как повышает прочность композита фибра для бетона. Задумываясь об использовании для строительства здания газонаполненных блоков, изучите отличие газобетона от газосиликата.

Что такое пенобетон (пеноблок)

Пенобетон является разновидностью пористого бетона. Для его изготовления используют песок, пенообразователь, цемент и воду. В некоторых случаях допускается добавка пластификаторов, а также затвердителей и фибры, чтобы улучшить характеристики пеноблока, а также повысить его прочность.

Основные отличия от газобетона

Пенобетон, в отличие от газоблока, имеет закрытую структуру пористости. Это означает, что пузырьки в толще изделия изолированы друг от друга. Поэтому при одинаковой плотности пенобетон не будет тонуть в воде, а газоблок быстро наберет воду и затонет. Следовательно, пеноблок имеет более высокую морозоустойчивость и лучшие теплоизоляционные характеристики, чем газоблок. За счет этого его используют в местах с высоким уровнем влажности, а также на стыках «холод-тепло». Газобетон не может быть использован в таких местах.

Более того, пенобетон обладает крайне низким коэффициентом водопоглощения, а потому устойчив к влажной среде. Как и газобетон, он является экологически чистым материалом.

Основные преимущества

Пенобетон может похвастаться:

  1. Высокой экономичностью материала. Благодаря точной геометрии размеров пеноблок кладется на клей, за счет чего можно избежать образования «мостиков холода» в швах кладки, а также уменьшить толщину внутреннего и наружного штукатурного слоя. Вес одного блока из пенобетона на 10-80% меньше веса тяжелого бетона, благодаря чему Вы неплохо сэкономите на фундаменте.
  2. Быстрой и удобной монтировкой. За счет низкой плотности материала, а также больших габаритов каждого блока Вы сможете намного быстрее возвести стену из этого материала. При этом Вам не понадобится много кладочного раствора. Материал легко обрабатывается, поэтому в нем можно проделывать штробы и борозды для проводки электрокабелей, труб, розеток, каналов. Также блоки из пенобетона легко можно распилить на доборные элементы с помощью ножовки, которая используется и для газобетона. Допустимая величина погрешности в размерах блоков составляет 1 мм.
  3. Высокой надежностью. Прочность пеноблока сравнима с камнем. Кроме того, материал не подвержен старению или гниению. Так как пеноблок имеет высокую прочность на сжатие, его можно использовать с сооружении объекта с меньшим объемным весом, благодаря чему увеличивается термическое сопротивление стены.
  4. Экологичностью материала. При нагреве пеноблок не выделяет токсичных веществ. Более того, он негорюч и пожаробезопасен, не вредит здоровью человека и животных. Для него характерен коэффициент экологичности 1, как и для дерева. Для сравнения, керамзитные блоки имеют аналогичный коэффициент 20, кирпич – 10, а ячеистый бетон – 2.

Благодаря высокому термическому сопротивлению стены из пенобетона аккумулируют тепло, поэтому можно сэкономить на отоплении до 30%.

Пенобетонные стены имеют первую степень огнестойкости и препятствуют распространению пламени по квартире в случае пожара. Поэтому пенобетон используется также в огнеупорных конструкциях. При воздействии интенсивного огня блок не взрывается и не расщепляется, чего нельзя сказать о тяжелом бетоне. Таким образом, арматура защищена от нагрева на протяжении 4-х часов при толщине пенобетона 150 мм и температуре пламени 12.000 градусов.

Пенобетон обеспечивает микроклимат в помещении, сопоставимый с таковым в деревянном доме. Материал не боится сырости и позволяет избегать слишком высоких температур в летний период, а также контролировать влажность воздуха. Это также способствует созданию комфортных условий для жизни.

Благодаря пеноблоку Ваш дом будет наполнен архитектурной выразительностью и красотой. Вы легко сделаете из блока архитектурные изделия в форме пирамид, углов или арок, так как материал легко обрабатывается.

Транспортировать пеноблок – одно удовольствие. Идеальное соотношение объема, веса и упаковки делает конструкцию удобной для транспортировки и позволяет в полной мере использовать мощность железнодорожного или автомобильного транспорта.

Сфера применения пеноблока в строительстве

Основными направлениями использования этого изделия являются:

  1. Тепло- и звукоизоляция крыш и полов;
  2. Заполнение пустот в кирпичной кладке подземных стен;
  3. Изоляция в пустотелых блоках;
  4. Сооружение сборных панелей любой размерности для коммерческого и промышленного применения, а также для строительства садовых украшений, монолитных стен;
  5. Скрепление керамической плитки, а также цементной плитки и плиты мраморного мощения.

Пенобетон — это… Что такое Пенобетон?

Пенобетон — ячеистый бетон, имеющий пористую структуру за счёт замкнутых пор (пузырьков) по всему объёму, получаемый в результате твердения раствора, состоящего из цемента, песка, воды и пенообразователя.

В таких бетонах часть пор создается пенообразующими добавками. Прочность пенобетона зависит от объёмного веса, вида и свойств исходных материалов, а также от режимов тепловлажностной обработки (ТВО) и влажности бетона. Ячеистый бетон изготовлен на цементном вяжущем. Поэтому он продолжает набирать прочность ещё длительное время. Исследования конструкций из неавтоклавных ячеистых бетонов после 40-50 лет эксплуатации показали, что они не только пригодны для дальнейшей эксплуатации, но и увеличили свою прочность в 3-4 раза по сравнению с марочной. Введение комплексных добавок повышает прочность бетона, снижает водопотребность и усадку при высыхании, повышает водо- и морозостойкость, снижает равновесную влажность и эксплуатационную теплопроводность.

Использование пенобетона

Пенобетон используется:

  • в классическом строительстве домов
  • в монолитном домостроении
  • для тепло- и звукоизоляции стен, крыш, полов, плит, перекрытий. Такой пенобетон называют монолитным.

Пеноблок — это строительный блок, получаемый из пенобетона.

Этот материал, получивший широкое распространение [1] в последние годы, на самом деле известен ещё с XIX века. Можно сказать, что пенобетон в данный момент переживает «второе рождение».[1]

Еще одной особенностью пенобетона является то, что технология производства достаточно простая и не требует большого вложения капитала. Хотя, в некотором роде, это минус, потому, что на рынке существует очень много кустарных производств, где качество пенобетона оставляет желать лучшего.

Свойства

Прочность пенобетона

Склад готовых газопеноблоков г. Новосибирск

Прочность и теплопроводность пенобетона

Марка плотности пенобетонаПрочность кг/см²Теплопроводность Вт/(м·К)
300неизвестно0,08
35070,09
4009,00,10
50013,00,12
60016,00,14
70024,00,18
80027,00,21
90035,00,24
100050,00,29
110064,00,34
120090,00,38

Достоинства

Благодаря пористой структуре пенобетон имеет ряд преимуществ:

  • Он обладает намного лучшими теплоизоляционными свойствами, чем обычный бетон. Но несравнимо более худшими, чем, например, пенопласт, минеральная вата или пеностекло.
  • На производство пенобетонного изделия (блок, плита, кирпич) требуется в 2-4 раза меньше цемента (по причине меньшей плотности — часть объёма занимают пустоты).
  • Пенобетонное изделие имеет меньшую по сравнению с бетонным массу, что снижает расходы на транспортировку, кладку и обработку. Кроме того масса сооружения получается меньшей, в результате можно сэкономить, используя более дешёвый фундамент.
  • Пенобетон по простоте обработки сравним с деревом: он легко пилится, сверлится, гвоздится.
  • Экологическая чистота аналогична бетону. При производстве пеноблока используются только цемент, песок и вода.
  • Пенобетон более гидроустойчив, чем газобетон, имеющий сквозные поры. Но менее, чем обычный бетон.

Недостатки

  • Из-за своей структуры пенобетон имеет относительно низкую механическую прочность, ориентировочно на порядок меньшую, чем у обычного бетона, и тем более уж совершенно несравнимую с железобетоном.[уточнить]

История возникновения и применения

В XIX веке строители подмешивали бычью кровь в цементно-известковый раствор, и белок крови, реагируя с раствором, образовывал пену. Тогда ввиду сложности получения большого количества пенообразователя пенобетон не получил распространения.

В 30-х годах XX века, случайно добавив «мыльный корень» в цементный раствор, пенобетон «открыли» заново, но широкого распространения он снова не получил. Тогда сыграли свою роль общая нестабильность в мире, Вторая мировая война, а также низкая стоимость энергоносителей в послевоенные годы. В 60-70-е годы пенобетон применялся в СССР, но в основном это был автоклавный пенобетон. Было построено несколько заводов по производству автоклавного пенобетона, но в силу номенклатурных причин и опять-таки невысоких цен на энергоносители внутри СССР преимущества пенобетона перед железобетоном были неочевидны, что привело к очередному «забвению» пенобетона.

В 90-е годы XX века бурный рост цен на энергоносители и развитие строительной отрасли привели строителей вновь к открытию «нового хорошо забытого старого» сначала в Европе, а к концу 90х-началу XXI века и в России.

В настоящий момент производство и предложение пенобетона отстаёт от нарастающего лавинообразно спроса на него.

Чаще всего пенобетон применяется в виде пенобетонных блоков, или «пеноблоков», также существуют технологии монолитной заливки сверхлёгкого пенобетона в качестве утеплителя.

Изготовление пенобетона

На сегодняшний день наибольшее распространение получили три метода производства пенобетона.

  1. Классический. По этому методу сначала готовят цементное тесто или цементно-песчаный раствор, а затем в него добавляют специально приготовленную пену из пеногенератора. Раствор в бетоносмесителе смешивается с пеной и получается пенобетонная смесь, которая при последующем твердении образует пенобетон. Этот способ можно назвать наиболее отработанным и надежным. Для данного метода обычно используются органические пенообразователи, смесители с улучшенным смешением компонентов и специальные пеногенераторы.
  2. Сухая минерализация. По этому методу пенобетонная смесь получается при совмещении сухих компонентов с низкократной пеной, непрерывно подаваемой пеногенератором. При этом образуется устойчивая пенобетонная смесь с малым количеством свободной воды. На поверхности пенных пузырьков оседают мелкие частицы твердой фазы. Высокая насыщенность ПАВ поверхности раздела «воздушная пора – дисперсионная среда» предопределяет формирование гладкой глянцевой поверхности стенок пор. Такой метод зачастую используется при непрерывной технологии производства пенобетона. Для данного метода используется пенообразователь СДО, пеногенераторы и специальные смесители.
  3. Баротехнология. По этому методу пенобетон получается под избыточным давлением смеси всех сырьевых компонентов. В баросмеситель сначала заливается вода с пенообразователем, потом подаются все компоненты. После этого в баросмеситель компрессором нагнетается воздух, создавая давление внутри. Пенобетонная смесь, полученная в пенобаробетоносмесителе, под давлением транспортируется из смесителя к месту укладки в формы или монолитную конструкцию. Для данного метода используются синтетические пенообразователи и специальные бароустановки.[2][3]

Литература

ГОСТ 25485-89 Бетоны ячеистые. Технические условия

ГОСТ 31359-2007 Бетоны ячеистые автоклавного твердения. Технические условия

ГОСТ 5742-76 Изделия из ячеистых бетонов теплоизоляционные

Ружинский С. И., Портик А. А., Савиных А. В. Все о пенобетоне. Издание второе улучшенное и дополненное. Санкт-Петербург, Издательство ООО «Строй-Бетон», 2006, 631 стр. ISBN 590319701-9.

Примечания

См. также

Ссылки

Газобетон или пенобетон – что лучше для строительства дома, сравнение материалов

Сравнение пенобетона и автоклавного газобетона

Пенобетон или газобетон — такой вопрос часто встает при выборе строительного материала для собственного дома. При этом многие изучают различия между двумя этими материалами достаточно поверхностно, ориентируясь лишь на их стоимость. Однако, несмотря на некоторую внешнюю схожесть, пенобетон и газобетон имеют существенные различия. Рассмотрим наиболее важные из них.

Технология производства этого материала проста и дешева, чем пользуются мелкие предприятия, производя его порой кустарным методом и в полевых условиях. Создается пенобетон из массы бетона (цемент, песок и вода) путем равномерного распределения по ней пузырьков воздуха. Пена, полученная из специализированных пенообразователей, просто механически перемешивается с бетонной смесью. Приготовленный в бетоносмесителе пенобетон через гибкий рукав транспортируется в формы или опалубку, где стеновые блоки отвердевают в естественных условиях.

Газобетон — гораздо более высокотехнологичный продукт, производство которого может быть налажено только на крупном предприятии, по запатентованным технологиям, что позволяет гарантировать стабильность в размерах готовых изделий и их качество. Технология производства газобетона включает в себя несколько циклов. Песок для него частично или полностью размалывается и соединяется с водой, известью и портландцементом в шаровых мельницах. Бетонная смесь перемешивается с алюминиевой пудрой и заливается в формы для образования пористой структуры. После отвердения массив газобетона режут на элементы, которые устанавливают в автоклав для отвердения при большой температуре с помощью насыщенного водяного пара при давлении. Поэтому газобетон еще называют автоклавным.

Различия в производстве как раз и создают отличия в качественных характеристиках газобетона и пенобетона. Важнейшим свойством любого строительного материала является его теплопроводность. По этой характеристике газобетон опережает многие другие стройматериалы, обладая самой низкой теплопроводностью среди них. Этому способствует структура газобетона — равномерно распределенные внутри блоков воздушные поры одинакового размера. Эта же структура не позволяет материалу насыщаться водой, а значить не подвергаться разрушениям при резких перепадах температуры. Пенобетон ничем подобным похвастать не может — простота его изготовления приводит к тому, что поры внутри его блоков получаются не только разного диаметра, но и неравномерно распределены. Соответственно о каком-либо постоянном коэффициенте теплопроводности пенобетона говорить не имеет смысла. Кроме того, если пенобетонные блоки из-за крупных и неравномерных пор требует дополнительного утепления между элементами, то газобетон имеет практически идеально гладкую поверхность и не нуждается в дополнительном утеплении.

Сложное, высокотехнологичное производство газобетонных блоков позволяет им задавать не только строгие линейные размеры, но и оснащать их гребнями, пазами, захватами. Это создает целый ряд преимуществ. Во-первых, блоки с очень точными размерами укладываются на клеевую смесь, что существенно сокращает сроки строительства, а стену делает практически монолитной. В таком случае стену можно и не штукатурить, сразу выкладывая на нее облицовочную плитку. Во-вторых, благодаря большому разнообразию видов блоков, которые различаются по параметрам, из газобетона можно строить даже самые сложные и ответственные виды стен. Стены же из пенобетона нуждается в обязательном слое штукатурки для выравнивания поверхности. Кроме того, в отличие от пенобетона в блоках из газобетона легко можно сделать красивые пропилы для укладки электропроводки или систем отопления. Материал не дает трещин и на нем не возникают неровности.

Стоит также отметить, что пенобетон может быть токсичным, так как в его производстве задействованы химические процессы, заменяющие обработку в автоклаве. Сложный производственный цикл блоков газобетона позволяет гарантировать экологическую чистоту этого материала.

Наконец, способ производства влияет на механическую прочность: при сравнимо одинаковой плотности материала газобетон гораздо прочнее, чем пенобетон.

По сравнению с пенобетоном

пенобетонгазобетон
ПрочностьПрочность низка, не используют в конструкциях подвергающихся нагрузкамСпособен нести более высокую нагрузку
ОтделкаХуже ложится штукатуркаЛучше ложится штукатурка
ТеплопроводностьВ его структуре все поры разные: одна — 1 мм, вторая — 3 мм, третья — 5 мм. Исходя из этого, в одном месте, где поры будут маленькие, тепловроводность будет одна, а там, где большие — другая! Если говорить о какой-то постоянной теплопроводности пенобетона, то это не имеет смыслаГазобетон имеет равномерно распределенную пору по всему блоку, то есть все поры одинакового размера, что нельзя сказать о пенобетоне!
Процесс производстваВысокий процент ошибки из-за человеческого фактора, отсутствие автоматизированных линий, т. е. в составе блока может содержаться неравномерно распеределенное количество компонентов, что ведет к некачественному блокуАвтоматизированное компьютизированное производство, человеческий фактор сведен к нулю
ГеометрияОтсутствие точной геометрииИдеальная геометрия

В статье «Отличия полистеролбетона от газобетона» вы можете узнать, что такое полистиролбетон и чем он отличается от газобетонных блоков.

Вам беспокоит вопрос, какой материал выбрать для строительства? Статья «Из чего строить дом?» поможет вам в выборе подходящего материала.

Пенобетон: характеристики, свойства, состав, отзывы

Ячеистые бетоны с пористой структурой стали всё чаще применяться при выполнении различных работ на строительных объектах. При оценке свойств и параметров материала высказываются различные мнения. Потому необходимо учитывать некоторые нюансы, когда начинает эксплуатироваться пенобетон.

Что это такое?

Пенобетон в баллонах – разновидность материала, при изготовлении которого применяют специальные твердеющие составы, к которым добавляются компоненты, способствующие появлению пены.

Такой материал актуален при проведении перепланировок, утепления внутри помещений. Благодаря свойствам пенобетона становится просто создать комфортный микроклимат внутри помещений.

Древесина, железобетон и кирпич – традиционные материалы, конкурентом для которых и выступает пенобетон. Эта разновидность вспененных композитов обладает своими преимуществами:

  1. Лёгкость в обработке.
  2. Экологическая чистота.
  3. Улучшенная тепло-, звукоизоляция.
  4. Повышенные характеристики по прочности. Потому многих интересует, что такое пенобетон.

Описание основных характеристик

Самые важные параметры описываются следующим образом:

  • Огнестойкость – 120 минут.
  • 2,0 – стандартный коэффициент паропроницаемости, в Мг/м час Па.
  • 2,6 – коэффициент ползучести.
  • Максимальный класс прочности – до 0,75.

Информация о составе

При изготовлении пенобетона применяются различные рецептуры. Требуемая плотность массы определяет, какой будет концентрация тех или иных компонентов. Пенобетон характеристики имеет, зависящие от следующих компонентов:

  1. Цемент. Требуется марка минимум М400. Чем выше марка – тем лучше качество материала и состава в готовом виде.
  2. Речной песок. Благодаря ему удельный вес пенобетона во вспененном виде достигает 600 килограмм на м3. В качестве заполнителя можно использовать и крупный керамзит, для улучшения характеристик массива по прочности.
  3. Вода, с температурой минимум в 25 градусов по Цельсию. По сравнению с цементом, воды у смеси должно быть меньше в 2,5 раза. Тогда пропорции для создания массива будут оптимальными. Главное – учитывать плотность пенобетона.
  4. Пенообразующие компоненты. Обычно это концентрированный пенообразователь. Костный клей, канифоль или протеин – основа для создания соответствующего материала. С момента приготовления пенообразователь надо использовать максимум за 20 дней. Только в этом случае пенобетон отзывы будет иметь положительные.

О технологиях изготовления

При создании композитов из вспененного бетона технология пенобетона по приготовлению бывает разной:

  • Классический.

Пеногенераторы передают используемый материал к смеси из песка и цемента, в готовом виде. Миксер проводит перемешивание пены, сухого материала. Окончание твердения способствует образованию массива, применяемого для строительства. Пеногенератора и эффективного смесителя будет достаточно для достижения неплохих результатов. Специалисты давно отдают предпочтение методу.

  • Минерализация сухого типа, называется поляризацией.

С добавлением к пенистому потоку сухих ингредиентов. Поризатор – специальное устройство, которое в этом случае отвечает за подачу. Смесь в виде частиц оседает на пузырчатой поверхности. Благодаря этому создаётся пенный материал высокого качества. Он транспортируется по рабочим магистралям на участок строительства. Или подаётся к специальным формам, где происходит твердение. Отличный метод, если нужна непрерывная заливка объекта, строительство из пенобетона которого продолжается.

  • Баротехнология.

Производство предполагает, что используется специальный смеситель для пенобетона. Пеногенраторы при этом становятся уже не нужными. Специальные миксеры работают под высоким давлением. После взбивания появляется качественный состав пенобетона, пропорции сохраняются стандартные.

Использование пенобетона в строительстве домов

Блоки, изготовленные из пенобетона, обладают большим количеством преимуществ. Стоит рассказать о следующих особенностях:

  1. Пористая структура делает самодельный пенобетон более тёплым материалом по сравнению с обычной разновидностью. При этом сохраняется монолитность, а по затратам при возведении и усилиям такой вариант более экономичен.
  2. Если сравнить с деревом, то у пенобетона будут такие же показатели по простоте обработки. Но именно новый вариант бетона стоит дешевле, лучше защищён от гниения, воздействия открытого огня.
  3. Что касается кирпичей, то они часто требуют высокой квалификации от мастеров, использующих их в деле. А вот пенобетон в домашних условиях подобных требований не предъявляет. Затраты на цементные растворы и утепление в дальнейшем снижаются. Ведь ширина может быть меньше, а теплопроводность остаётся высокой.
  4. Наконец, пеноблоки не боятся воды, в отличие от газосиликатных аналогов.

Но у материала есть и ряд особенностей, которые надо учитывать:

  • Необходимость в клеящих смесях, специальных инструментах при строительстве.
  • На гидроизоляционном слое располагается первый ряд блоков. Основой становятся обычные цементные растворы. Уровень контролирует, насколько правильно проходит укладка.
  • Окончание укладки первого уровня предполагает шлифовку горизонтальной поверхности. Все выступающие части надо срезать, подточить.
  • При укладке второго, последующего рядов, применяются технологии, аналогичные работе с кирпичами. Но имеются определённые нюансы. При скреплении используется клеевой раствор. Он наносится с применением зубчатого ковша и шпателя, тоже с зубцами.
  • Сперва проклеивается плоскость блока по вертикали, потом – по горизонтали. Слой имеет толщину не больше 2-3 миллиметров.
  • Через каждые 3-4 ряда проводится армирование, тогда конструкция будет более жёсткой. В нижнем ряду необходимо сделать штробу, 40 на 40 миллиметров. Внутрь этой штробы укладывают арматуру. От края блока она должна находиться на расстоянии минимум 60 миллиметров. С блоков тщательно удаляется пыль перед укладыванием арматуры.
  • Установка специальных уголков обязательна для внутренних, наружных поверхностей. Их врезают в блоки таким образом, чтобы не было выходов за общую поверхность кладки. По сравнению с проёмом, уголок должен быть минимум на 60 миллиметров длиннее.

Как применять клей? У клеевых растворов ограниченный срок твердения. Не рекомендуется сразу готовить растворы в больших объёмах. Лучше создавать смесь по нескольку раз, небольшими порциями. Раствор в готовом виде периодически перемешивается.

Немного о марках пенобетона

Выделяется четыре разновидности данного материала:

  1. Теплоизоляционный.

Теплоизолирующие свойства – главный акцент. Из-за этого иногда уменьшается прочность. Сюда входят марки, обозначаемые от D150 до D400. Марки ниже класса D400 по классу прочности не нормируются. У последней разновидности показатель равен 9 килограммам на кубический сантиметр.

  1. Конструкционно-теплоизоляционные.

Речь идёт о марках с D500 до D900. Минимум прочности – 13 килограмм на м3. Но у некоторых разновидностей она достигает 16, 24, 27 килограмм на м3. Максимум – 35. Такая разновидность наиболее сбалансирована по своим характеристикам.

  1. Конструкционный.

Группа с марками от D1000 до D1200. Минимум показателя прочности – 50 килограмм на м3. Максимум – 64 и 90. Сборный пенобетон данной разновидности применяется, если именно прочности нужно уделить больше всего внимания.

  1. Конструкционно-поризованный.

Все марки до D1600. Разновидность выпускается в небольших партиях, поскольку применяется на практике достаточно редко. Потому и характеристики данной разновидности не описываются действующими ГОСТами. Всё о пенобетоне невозможно рассказать за один раз.

Критерии для правильного выбора

Сначала покупателю рекомендуется внимательно изучить информацию относительно производителя. Особенно это касается наличия или отсутствия сертификатов, условий по поставкам, соответствия продукции ГОСТам. Хорошему и надёжному производителю нечего скрывать. Значит, не приходится сомневаться и в качестве выпускаемого материала. Хорошие производители приобретают для организации производства площадь не менее, чем на 180 квадратных метров. На этой территории размещаются установки, разрезающие основы на блоки. У производственных помещений должны присутствовать отопительная система, крыши. Перемычки пенобетонные обустраивать разрешается.

Стоимость так же имеет не последнее значение. Если она слишком низкая, в результате может пострадать качество. Главное – не верить тем, кто заверяет, что, благодаря секретным рецептам смог превратить одну марку в другую.

Для блоков не нужно сохранение яркого, чистого цвета, технологии производства не позволят добиться такого результата. Нормальная окраска пенобетона – сероватый оттенок, который может быть чуть светлее или темнее. Неоднородная окраска – признак плохого качества.

Отдельно рекомендуется проверять герметичность. Влага легко проникает внутрь материала, части которого легко соединяются друг с другом. Наличие сколов и трещин на поверхности недопустимо.

Сохранение формы прямоугольника важно для блоков, только в этом случае кладка не доставит проблем. Исследовать нужно все четыре стороны материала. И то, из чего делают пенобетон.

Необходимые характеристики в полном объёме блоки приобретают только спустя 28 дней после изготовления. Самое правильное решение – выдержка приобретённого материала, на протяжении минимум двух-трёх недель. Этот совет помогает избежать неприятностей, даже когда продан недодержанный материал.

Дополнительные практические советы

Пенобетонные блоки легко повреждаются на гранях. Потому разгрузка материала требует соблюдения предельной осторожности. Для укладки рекомендуется использовать не стандартные растворы, а специальную разновидность клея, с цементной основой. Тогда слой материала будет тоньше, появится дополнительная защита от мостиков холода. Через толстые швы конструкция неизбежно теряет часть тепла. Не важно, какой берётся пенобетон, состав смеси, таблица с характеристиками.

Облицовка для стен из пенобетона обязательна. Не стоит верить производителям, которые стараются убедить в обратном, это враньё. Если пенобетон изначально лишён защиты, то он будет постепенно разрушаться под воздействием окружающей среды. В качестве облицовочного материала можно использовать обычные разновидности штукатурки, либо материалы для фасадов вентилируемого типа. Под штукатурку прокладывается сетка, закрепляемая на основании.

Если функцию облицовки выполняет кирпич – оставляются зазоры с воздухом, ведь его проникновение внутрь разное. Испарения воды не проникнут внутрь, если прилегание будет слишком плотным. На это влияет и пена для пенобетона.

Изучение отзывов

В большинстве случаев владельцы домов из пеноблоков отзываются о материале положительно. Обычно речь идёт о постройках, возведённых до 10-15 лет назад. Отзывы публикуются спустя некоторое время после продолжительной, активной эксплуатации. Вот главные свойства пенобетона, о которых говорят потребители:

  • Экономия средств в отопительный период.
  • Комфорт.
  • Хорошая теплоизоляция.

Среди недостатков отмечают внешний вид, который далеко не всегда сохраняет привлекательность. Приходится тратить дополнительные средства для проведения работ по отделке.

Нельзя отклоняться от требований. Специалисты так же считают, что пеноблоки удобно использовать для создания домов. Но условия и характеристики сохраняют высокий уровень лишь в том случае, если соблюдать требования относительно технологий строительства и эксплуатации самих материалов. При любых нарушениях и отхождениях от нормативов вероятно возникновение проблем.

Срок службы пенобетона, строений составляет до 70-80 лет. Пеноблоки способны выдержать до 25 циклов заморозки и оттаивания.

Заключение

При решении использовать пенобетон из аргиллитовых плит для строительства рекомендуется изучить всю доступную информацию, посоветоваться с профессионалами. Хорошо, если есть знакомые, уже возводившие здания с соответствующими характеристиками. Работу так же рекомендуется доверять настоящим мастерам, лишь часть операций при желании выполняется самостоятельно. Если владелец уверен в своих навыках, это позволит сэкономить денежные средства. Результат будет долго радовать своим качеством при соблюдении всех необходимых требований и условий.

Пенобетон. Газобетон. Газосиликат. Или кто же из них пеноблоки?

Пенобетон (foam concrete) является одним из наиболее популярных строительных материалов, который известен как хороший утеплитель, и в то же время, пенобетон является удобным конструктивным элементом для строительства невысоких зданий. Тех, кого волнуют экологические свойства строительных материалов, можем сразу успокоить: пенобетон является экологически чистым, не содержащим вредных, химических веществ, материалом. Пенобетон изготавливают из цемента, который сам по себе является органическим веществом.

Видео: Пенобетон или газобетон? О торговле иллюзиями на рынке. Что лучше? Газобетон или пенобетон?

Если вспомнить другие незаменимые качества, то следует отметить, что пенобетон обладает высокой влагостойкостью. Он очень долговечен – при разумной эксплуатации помещения, и на протяжении лет, его прочность будет только увеличиваться.

Для тех, кто любит летом прохладу, а зимой – теплые комнаты, пенобетон подойдёт, несомненно: его отличает низкая теплопроводность. Такой же теплопроводностью обладает всем известный пенополистирол, однако, он может подвергаться объеданию грызунами, а пенобетон защищен от этого. Пенобетон является монолитным материалом, который позволяет заполнить все пространство, не оставляя каких-либо щелей. Однако, в доме нет духоты, потому что пенобетон не нарушает естественной вентиляции. Кроме всего прочего, пенобетон не является легковоспламеняющимся материалом, и по стоимости вполне доступен большинству населения. Пенобетон позволяет работать быстро и без особых сложностей!

В промышленном и индивидуальном строительстве широко применяются три разновидности так называемых ячеистых бетонов, отличающиеся друг от друга как исходными компонентами, так и технологией производства и как следствие — эксплуатационными свойствами.

В пено- и газобетоне вяжущим является цемент, поэтому эти материалы и называются бетонами. В газосиликате вяжущим является известь, по большому счету газосиликатный блок – это пористый силикатный кирпич. Приставки пено- и газо- определяют метод порообразования. Если в цементнопесчанный раствор добавить пену и перемешать до получения однородной пористой массы, то мы получим пенобетон.

В газобетоне и газосиликате порообразование происходит за счет химической реакции выделения водорода при реакции алюминия и щелочи. В раствор добавляется сначала едкий натр, а затем алюминиевая пудра (в случае с газосиликатом едкий натр добавлять не нужно, так как раствор и так делается на основе негашеной извести представляющей из себя концентрированную щелочь). В результате химической реакции на месте каждой частички алюминия образуется пузырек водорода – материал становится пористым.

Цементный камень набирает прочность в естественных условиях. А вот для того чтобы из известкового раствора получить силикат его необходимо обработать в автоклаве (большой пароварке позволяющей оставаться воде жидкой при температуре 160 градусов).

Как выше уже говорилось именно исходными компонентами и технологией производства определяются эксплуатационные характеристики этих материалов.

Бетон воду «любит»(во влажном состоянии набирает прочность), известь воды боится (при намокании увеличивается в объеме, что может привести к разрушению структуры материала). Пена дает закрытые поры, а в газобетоне и газосиликате структура пор открытая (это как поролон и пенопласт — один воду впитывает, другой нет), и т. д. При одинаковой плотности самым прочным будет газосиликат, далее идет газобетон и замыкает список пенобетон. По экологичности пенобетону конкурентов нет.

Ячеистые бетоны благодаря структуре содержащей воздух обладает отличными звукоизолирующими и теплоизолирующими свойствами, превосходящими большинство других строительных материалов. Несмотря на значительное содержание воздуха в материале и пенобетон, и газобетон и газосиликат обладают достаточно высокой прочностью.

Прочность ячеистого бетона напрямую зависит от его плотности, определяемой соотношением количеством пор. Таким образом, можно регулировать плотность и, соответственно, вес блоков при изготовлении. Для теплоизоляции применяется пенобетон с плотностью от 400 до 500 килограммов на кубометр. Такой бетон не используется для строительства несущих стен, но отлично подходит для ограждающих конструкций с функцией теплоизоляции. Несущие стены и монолитные конструкции изготавливаются из более плотного конструкционного пенобетона.

По плотности пенобетонные блоки достаточно близки к древесине. Их без особых усилий можно резать обычной ручной пилой, при этом материал сохраняет прочность. Из пенобетона также изготавливаются различные штучные изделия.

И пенобетон, и газобетон и газосиликат обладают своими достоинствами, поэтому выбор материала зависит от условий эксплуатации и от ваших предпочтений. Нет материала, который бы был лучше других. Есть материалы с различными свойствами. Выберите, что важнее именно вам и выбор материала перестанет быть проблемой.

Пенобетон в строительстве
Что такое пеноблок? Простыми словами – это камень с пузырьками. Технология их изготовления проста до безобразия: жидкий бетон вспенивают, и когда он застывает образуется пенобетон, либо газобетон. Пенобетон обладает многими удивительными свойствами.

1) Он легко принимает любую форму даже с помощью ручной пилы. Их можно обрабатывать фрезеровочным станком, строгать, сверлить. Поэтому из пеноблоков можно создавать сложные геометрические сооружения, такие как арки, разные эркеры, а так же безукоризненно ровные фронтоны, которые подходят под любую крышу.
2) Из-за их конструкции и щелей, не более 2-3 мм, создается особый микроклимат, который уменьшает количество теплоты, уходящей наружу на 20-30%. Летом же образуется благоприятный микроклимат за счет впитывания и отдачи влаги.
3) За счет их легкости физической и легкости работы с ними, сооружение домов из пеноблоков является не роскошью, а удачной покупкой за небольшие деньги. Они легко монтируются, их легко класть за счет точных размеров, погрешность в которых составляет около 1 мм).
4) За счет того, что это камень, пенобетон не горит. И, в отличии от кирпича, который при сильном нагревании теряет свою стойкость, пенобетон всегда остается стойким и крепким при любых температурах.
5) Особо важное свойство пенобетона заключается в хорошей звукоизоляции. Она в 2! раза сильнее, чем у кирпича. Это делает проживание в доме из пенобетона комфортным и приятным.

Но при всех этих качествах пенобетон имеет один недостаток – его внешний вид. С внешней стороны это легко устраняется наружной отделкой. Внутри же его штукатурят (после чего покрывают гидрофобным составом), либо облицовывают кирпичом или виниловым сайдингом.

В целом, пенобетон – отличный выбор. Он пожаростойкий, легкий в монтаже, звукоизоляционный; его полезные свойства можно перечислять еще долго. Если хочется быстро, качественно и дешево построить шикарный коттедж, то пенобетон – ваш выбор.

P.S. Приведенные сравнительные характеристики касаются только качественно выполненных строительных материалов. В жизни зачастую может получаться некачественный газосиликат менее прочный, чем пенобетон или некачественный пенобетон менее экологичный, чем газосиликат.

Что такое пенобетон, где применяется, какие имеет характеристики?

Пенобетон распространенный строительный материал, преимущество которого в небольшом весе и отличных характеристиках. Его главной особенностью является способность хорошо удерживать тепло. Другим полезным свойством пенобетона является возможность отвода лишней влаги, что происходит благодаря пористой структуре.

Что представляет собой пенобетон?

Пенобетон применяется для замены стандартных стройматериалов — кирпича и шлакоблока. Приготовление пенобетона происходит по технологии распределения пузырьков воздуха в бетонной массе. В составе этой смеси имеется такой ингредиент, как пена. Она смешивается с бетонным раствором, благодаря чему и получается пористая структура.

Пенобетон может использоваться как жидкий раствор, который заливается в заранее подготовленные полости, к примеру под кирпичную опалубку, либо в виде пенобетонных блоков, которые внешне напоминают газоблоки. Второй вариант более привычен. Блоки можно использовать для обычного строительства.

Сферы применения пенобетона

Как материал, пенобетон может быть применен в самых разных сферах строительного дела. Вот несколько областей, где он может эффективно использоваться:

  • изготовление готовых блоков для строительства. Они могут иметь разный размер, форму, толщину. Блоки применяются для создания стен, перегородок, перекрытий.
  • в монолитном строительстве;
  • для звуковой и тепловой изоляции стен, полов, перекрытий;
  • заполнение полостей и пустот. Благодаря тому, что бетон имеет жидкую консистенцию, его можно заливать в любые пространства, в том числе те, к которым сложно подобраться.
  • теплоизоляция крыш — материал имеет невысокую плотность и хорошо удерживает тепло.
  • заполнение фундаментных траншей. Такой раствор не нужно дополнительно уплотнять. Он ложится равномерно, и хорошо распределяет нагрузку.
  • применение при строительстве туннелей. Пенобетоном заполняют пустоты, образующиеся при прокладке туннелей.
  • изоляция трубных коммуникаций.

Технология изготовления пенобетона

Для создания пенобетона и дальнейшего распределения его по блокам, требуется специальное оборудование, а также ряд необходимых составляющих. Главными ингредиентами являются:

  • пенообразователь;
  • цемент;
  • фиброволокно;
  • песок;
  • вода;
  • добавки для укрепления состава и улучшения свойств.

Сначала создается обычный бетонный раствор, затем он смешивается с пеной, в результате чего получается пенобетон, который затем подается в формы, и застывает в течение суток.

Есть разные технологии изготовления пенобетона — классическая, описанная выше, баротехнология и метод сухой минерализации.

Баротехнология предполагает, что все ингредиенты будут смешиваться одновременно, без предварительной подготовки. Все составляющие подаются в высокооборотный смеситель, который работает в течение нескольких минут. Минусом такого метода, может быть малая прочность получившегося пенобетона, поскольку поры внутри раствора будут более крупными, чем при классической технике.

При сухой минерализации, первым делом изготавливается пена, которая затем в сухую смешивается с остальными ингредиентами — цементом, песком и т. д.

Преимущества и недостатки материала

Среди главных достоинств пенобетона, следует отметить следующее:

  • Низкий уровень теплопроводности, что позволяет дольше удерживать тепло внутри помещения, даже без использования дополнительной изоляции.
  • Малый вес материала. Позволяет возводить конструкцию без необходимости заводить мощный фундамент. Нагрузка на основание будет минимальной, и распределится равномерно.
  • Хороший уровень прочности. Пенобетон марки D900 дает возможность строить несущие стены для трехэтажных домов.
  • Пенобетон хорошо переносит мороз. Пористая структура позволяет легко справляться с влагой внутри материала.
  • Высокая огнестойкость. Пенобетон может без последствий находиться под воздействием открытого огня порядка 4 часов.
  • Экологичность, влагостойкость и сопротивление биологическим процессам.
  • Материал легко обрабатывать, что поможет в отделке и монтаже изоляции.
  • Пенобетон имеет невысокую цену. Помимо этого для него не требуется делать дорогой фундамент. Постройка из него обойдется довольно дешево.

Среди недостатков надо отметить такие моменты:

  • Часто производители не точно соблюдают технологию производства данного материала. В результате чего в процессе его эксплуатации могут возникать проблемы. По большей части это касается пенобетонных блоков, которые могут скалываться и трескаться. Транспортировать материал надо бережно. Помимо этого блоки могут давать усадку до 3 мм на 1 м стены.
  • Пенобетон имеет свойство впитывать влагу. По этой причине, его следует дополнительно обрабатывать гидрофобными составами или штукатурить.
  • Для стен из пенобетона не подойдут обычные гвозди или дюбеля. Для него нужно использовать специальные дюбеля с АВС насадками, либо метрические шурупы, требующие дополнительной подготовки. Несмотря на это крепления будут надежными.

Разновидности и марки пенобетона

Выделяют 4 марки пенобетона. Они отличаются между собой плотностью и прочностью.

  1. D150 — D400. Это теплоизоляционные марки, плотность которых составляет 150 — 400 кг на 1 куб. м. Прочность D400 составляет В0,5 — В0,75, что равно примерно 9 кг на 1 куб. см. Марки ниже D400 не классифицируются по прочности.
  2. D500 — D900. Являются конструкционно-теплоизоляционными, с плотностью 500 — 900 кг на куб. м. Прочность этих марок составляет от 13 до 35 кг на 1 куб. см.
  3. D1000 — D1200. Плотность 1000 — 1200 кг на куб. м. Они имеют прочность до 90 кг на см.
  4. D1300 — D1600. Плотность составов достигает 1600 кг на куб. м. Они не имеют отражения в ГОСТе, поскольку производятся малыми партиями в особых случаях.

Показатели прочности могут отличаться в зависимости от внешних условий, таких как влажность и температура.

Характеристики и состав пенобетона

Вот какими характеристиками обладает материал:

  • Теплоемкость — от 0,08 Вт/м, до 0,38 Вт/м.
  • Влагопоглощение — не более 14% от общей массы.
  • Морозостойкость — 35 полных циклов заморозки и разморозки.
  • Прочность материала составляет 2,5 — 7,5 МПа.
  • Усадка пенобетона проявляется в течение первого месяца после строительства и составляет около 0,1%.
  • Вес 1 кв. метра стены из пенобетона составляет 70 — 900 кг. Это в несколько раз меньше, чем у кирпича.
  • Блоки из этого материала имеют стандартные размеры: 30х60 см. Толщина: 10 — 25 см. На 1 кв м приходится 22 — 55 блоков.

В состав пенобетона входят такие ингредиенты как:

  • цемент — ГОСТ 10178,
  • вода — ГОСТ 23732%
  • песок — ГОСТ 8736

Пенообразователь можно использовать разный. На основе клея, канифоли или едкого натра.

Заключение

Пенобетон является отличным строительным материалом, который может использоваться в разных сферах. С его помощью можно возводить как хозяйственные постройки, так и жилые дома, которые будут отвечать всем требованиям надежности и экологичности. Пенобетон отличается небольшой стоимостью и простотой в обработке. Взяв его за основу, можно недорого построить дом, срок службы которого будет измеряться десятилетиями.

 

Пенобетон — материалы, свойства, преимущества и производство

🕑 Время чтения: 1 минута

Пенобетон — это тип легкого бетона, который изготавливается из цемента, песка или летучей золы, воды и пены. Пенобетон бывает в виде вспененного раствора или вспененного раствора.
Пенобетон можно определить как вяжущий материал, состоящий минимум на 20 процентов из пены, которая механически вовлекается в пластичный раствор. Плотность пенобетона в сухом состоянии может варьироваться от 300 до 1600 кг / м3.Прочность пенобетона на сжатие, определенная через 28 суток, составляет от 0,2 до 10 Н / мм 2 или может быть выше.

Пенобетон отличается от бетона с воздухововлекающими добавками по объему захваченного воздуха. Бетон с воздухововлекающими добавками занимает от 3 до 8 процентов воздуха. Он также отличается от замедленного раствора и газобетона по той же причине процентного содержания воздуха.
В случае минометных систем замедленного действия — от 15 до 22 процентов. В случае пенобетона пузырьки образуются химически.

История пенобетона

Пенобетон имеет долгую историю и впервые был введен в эксплуатацию в 1923 году. Первоначально он использовался в качестве изоляционного материала. За последние 20 лет усовершенствования в области производственного оборудования и повышения качества пенобетона позволили широко использовать пенобетон.

Производство пенобетона

Производство пенобетона включает растворение поверхностно-активного вещества в воде, которая пропускается через пеногенератор, который дает пену стабильной формы.Пена производится в смеси с цементным раствором или затиркой, так что получается вспененное количество необходимой плотности.
Эти поверхностно-активные вещества также используются при производстве наполнителей с низкой плотностью. Их также называют контролируемыми материалами низкой прочности (CLSM). Здесь для получения содержания воздуха от 15 до 25 процентов пену добавляют непосредственно в смесь с низким содержанием цемента и богатого песка.
Следует иметь в виду, что некоторые производители поставляют заполнители с низкой плотностью в виде пенобетона, поэтому следует соблюдать осторожность. Для производства пенобетона используются два основных метода:

  • Встроенный метод и
  • Метод предварительного вспенивания

Поточный способ производства пенобетона

В агрегат добавляется базовая смесь из цемента и песка. В этом аппарате смесь тщательно смешивается с пеной. Процесс смешивания осуществляется при правильном контроле. Это поможет смешивать большие количества. Встроенный метод состоит из двух процессов;

  • Мокрый метод — встроенная система
  • Сухой метод — встроенная система

Мокрый метод встроенной системы: материалы, используемые во влажном методе, будут более влажными по своей природе.С помощью серии статических встроенных миксеров основной материал и пена загружаются и смешиваются. Постоянный встроенный монитор плотности используется для проверки смешивания всей смеси.
Производительность зависит от плотности пенобетона, а не от готового автобетоносмесителя. То есть одна поставка базового материала 8 м 3 даст 35 м 3 пенобетона плотностью 500 кг / м 3 .
Сухой метод линейной системы: здесь используются сухие материалы.Их забирают в бортовые силосы. Отсюда они должным образом взвешиваются и смешиваются с помощью бортовых миксеров. Затем смешанные основные материалы перекачиваются в смесительную камеру.
При мокром способе производства пенобетона пену добавляют и перемешивают. В этом методе для смешивания используется большое количество воды. 130 кубометров пенобетона можно произвести из разовой партии цемента или зольной смеси.

Пенопенный способ производства пенобетона

Здесь автобетоносмеситель доставляет основной материал на объект.Через другой конец грузовика предварительно сформированная пена впрыскивается в грузовик, в то время как миксер вращается. Таким образом, небольшие количества пенобетона можно производить для небольших работ, например, для затирки швов или работ по заливке траншей.
Этот метод позволяет получить пенобетон плотностью от 300 до 1200 кг / м 3 . Подвод пены будет от 20 до 60 процентов воздуха. Окончательный объем пены можно рассчитать, уменьшив количество другого основного материала. Как это осуществляется в грузовике.Для этого метода сложно контролировать стабильный воздух и плотность. Таким образом, должна быть указана и разрешена степень превышения и уменьшения урожайности.
Когда пена образуется, ее смешивают с цементной смесью, имеющей водоцементное соотношение от 0,4 до 0,6. Если раствор влажный, пена становится неустойчивой. Если он слишком сухой, предварительная пена трудно смешать.

Состав пенобетон

Состав пенобетона зависит от требуемой плотности. Как правило, пенобетон с плотностью менее 600 кг / м 3 будет содержать цемент, пену, воду, а также некоторое количество летучей золы или известняковой пыли.Для повышения плотности пенобетона можно использовать песок. Базовая смесь составляет от 1: 1 до 1: 3 для более тяжелого пенобетона, который является соотношением наполнителя к портландцементу (CEM I).
Для большей плотности, скажем, более 1500 кг / м 3 используется больше наполнителя и среднего песка. Для уменьшения плотности количество наполнителя следует уменьшить. Рекомендуется удалить пенобетон плотностью менее 600 кг / м 3 .

Материалы для пенобетона

Цемент для пенобетона

Обычно используется обычный портландцемент, но при необходимости можно использовать и быстротвердеющий цемент.Пенобетон может включать широкий спектр цемента и другие комбинации, например, 30 процентов цемента, 60 процентов летучей золы и 10 процентов известняка. Содержание цемента колеблется от 300 до 400 кг / м3.

Песок для пенобетона

Максимальный размер используемого песка может составлять 5 мм. Использование более мелкого песка размером до 2 мм с количеством, проходящим через сито 600 микрон, составляет от 60 до 95%.

Пуццоланы

Дополнительные вяжущие материалы, такие как летучая зола и измельченный гранулированный доменный шлак, широко используются в производстве пенобетона.Количество используемой летучей золы колеблется от 30 до 70 процентов. Белый GGBFS колеблется от 10 до 50%. Это снижает количество используемого цемента и экономично.
Можно добавить микрокремнезем для увеличения прочности; в количестве 10 процентов по массе.

Пена

Гидролизованные протеины или синтетические поверхностно-активные вещества являются наиболее распространенными формами, на основе которых изготавливаются пены. Пенообразователи на синтетической основе проще в обращении и дешевы. Их можно хранить более длительный срок.
Для производства этих пен требуется меньше энергии.Пена на основе протеина дорогая, но обладает высокой прочностью и характеристиками. Пена бывает двух видов: мокрая пена и сухая пена.
Влажные пены плотностью менее 100 кг / м3 не рекомендуются для изготовления пенобетона. У них очень рыхлая крупнопузырчатая структура. Средство и вода распыляются до мелкой сетки. В результате этого процесса образуется пена с пузырьками размером от 2 до 5 мм.
Сухая пена очень устойчива по своей природе. Раствор воды и пенообразователя принудительно нагнетается в смесительную камеру сжатым воздухом.Полученная пена имеет размер пузырьков меньше, чем влажная пена. Это меньше 1 мм. Они образуют равномерно расположенные пузырьки.
BS 8443: 2005 касается вспенивающих добавок.

Материалы и заполнители прочие для пенобетона

Грубый заполнитель или другой заменитель грубого не может быть использован. Это потому, что эти материалы тонут в легком пенопласте.

Детали смеси пенобетона

Свойства пенобетона зависят от следующих факторов:

  • Объем пены
  • Содержание цемента в смеси
  • Наполнитель
  • Возраст

Влияние водоцементного соотношения очень мало влияет на свойства пенобетона, в отличие от пены и содержания цемента.

Свойства пенобетона

Свойства пенобетона в свежем и затвердевшем состоянии описаны ниже;

Внешний вид пенобетона

Точное сравнение пены, которая производится для производства пенобетона, напоминает пену для бритья. Когда смесь смешивается со стандартной ступкой, конечная смесь будет напоминать по консистенции йогурт или в форме молочного коктейля.

Свежие свойства пенобетона

У пенобетона очень высокая удобоукладываемость, величина осадки до обрушения составляет 150 мм.Они обладают сильным пластифицирующим действием. Это свойство пенобетона делает его востребованным в большинстве областей применения. Если поток смеси остается статичным в течение длительного периода, очень трудно восстановить его исходное состояние. Пенобетон в свежем состоянии имеет тиксотропный характер.
Вероятность просачивания пенобетона снижается из-за высокого содержания воздуха. При повышении температуры смеси происходит хорошее наполнение, а контакты осуществляются за счет расширения воздуха.
Если количество используемого песка больше или используется крупный заполнитель, отличный от стандартных спецификаций, есть вероятность расслоения.Это также может привести к схлопыванию пузыря, что уменьшит общий объем и структуру пены.
Аккуратно проводить перекачку свежего пенобетона. Свободное падение пенобетона в конце с завихрением может привести к разрушению пузырьковой конструкции.

Упрочненные свойства пенобетона

Физические свойства пенобетона явно связаны с его плотностью в сухом состоянии. Разница видна в таблице, приведенной ниже.

Таблица.1. Типичные свойства пенобетона в затвердевшем состоянии

Плотность в сухом состоянии
кг / м 3
Прочность на сжатие Н / мм 2 Предел прочности
Н / мм 2
Водопоглощение
кг / м 2
400 0,5 — 1 0,05-0,1 75
600 1-1.5 0,2-0,3 33
800 1,5 -2 0,3-0,4 15
1000 2,5 -3 0,4-0,6 7
1200 4,5-5,5 0,6–1,1 5
1400 6-8 0,8–1,2 5
16 00 7.5-10 1–1,6 5

Теплопроводность пенобетона колеблется от 0,1Вт / мК до 0,7Вт / мК. Усадка при сушке составляет от 0,3 до 0,07% при 400 и 1600 кг / м3 соответственно.
Пенобетон не обладает такой же прочностью, как автоклавный блок с такой же плотностью. Под действием нагрузки внутри конструкции создается внутреннее гидравлическое давление, которое может вызвать деформацию пенобетона.
Затвердевший пенобетон обладает хорошей устойчивостью к замерзанию и оттаиванию.Было замечено, что нанесение пенобетона в зоне с температурой от -18 градусов Цельсия до +25 градусов Цельсия не показало никаких признаков повреждения. Плотность пенобетона, используемого здесь, составляет от 400 до 1400 кг / м 3 .

Преимущества пенобетона

  • Пенобетонная смесь не оседает. Следовательно, уплотнение не требуется.
  • Собственный вес уменьшен, так как это легкий бетон
  • Пенобетон в свежем состоянии имеет сыпучую консистенцию.Это свойство поможет полностью заполнить пустоты.
  • Пенобетонная конструкция обладает отличной способностью распределять и распределять нагрузку.
  • Пенобетон Не создает значительных боковых нагрузок
  • Свойство водопоглощения
  • Партии пенобетона просты в производстве, поэтому проверка и контроль качества легко выполняются.
  • Пенобетон имеет повышенную устойчивость к замерзанию и оттаиванию
  • Безопасное и быстрое выполнение работ
  • Рентабельность, меньше обслуживания

Недостатки пенобетона

  • Наличие воды в смешанном материале делает пенобетон очень чувствительным.
  • Сложность в отделке
  • Время смешивания больше
  • С увеличением плотности снижаются прочность на сжатие и прочность на изгиб.

Подробнее о Специальные бетоны

Механические характеристики легкого пенобетона

Пенобетон демонстрирует превосходные физические характеристики, такие как небольшой собственный вес, относительно высокая прочность и превосходные тепло- и звукоизоляционные свойства. Это позволяет минимизировать расход заполнителя и, заменяя часть цемента летучей золой, способствует соблюдению принципов утилизации отходов. В течение многих лет применение пенобетона ограничивалось засыпкой подпорных стен, изоляцией фундамента и звукоизоляцией черепицы.Однако в последние годы пенобетон стал перспективным материалом для конструкционных целей. Была проведена серия испытаний для изучения механических свойств пенобетонных смесей без летучей золы и с содержанием летучей золы. Кроме того, было исследовано влияние 25 циклов замораживания и оттаивания на прочность на сжатие. Кажущаяся плотность затвердевшего пенобетона сильно коррелирует с содержанием пены в смеси. Увеличение плотности пенобетона приводит к снижению прочности на изгиб.При одинаковых плотностях прочность на сжатие смесей, содержащих летучую золу, примерно на 20% ниже по сравнению с образцами без летучей золы. Образцы, подвергнутые 25 циклам замораживания-оттаивания, демонстрируют примерно на 15% меньшую прочность на сжатие по сравнению с необработанными образцами.

1. Введение

Пенобетон известен как легкий или ячеистый бетон. Обычно его определяют как цементирующий материал с минимум 20% (по объему) механически захваченной пены в растворной смеси, где воздушные поры захватываются в матрице с помощью подходящего пенообразователя [1].Он демонстрирует отличные физические характеристики, такие как небольшой собственный вес, относительно высокая прочность и превосходные тепло- и звукоизоляционные свойства. Это позволяет минимизировать расход заполнителя и, заменяя часть цемента летучей золой, способствует соблюдению принципов утилизации отходов [2]. Путем правильного выбора и дозировки компонентов и пенообразователя можно достичь широкого диапазона плотностей (300–1600 кг / м 3 ) для различных структурных целей, изоляции или наполнения [2].

Пенобетон известен уже почти столетие и был запатентован в 1923 году [3]. Первое комплексное исследование пенобетона было проведено в 1950-х и 1960-х годах Валоре [3, 4]. После этого исследования более подробная оценка состава, свойств и областей применения ячеистого бетона была проведена Руднаем [5], а также Шорт и Киннибург [6] в 1963 году. Новые смеси были разработаны в конце 1970-х и начале 1980-х годов. , что привело к увеличению коммерческого использования пенобетона в строительных конструкциях [7, 8].

В течение многих лет применение пенобетона ограничивалось засыпкой подпорных стен, изоляцией фундамента и звукоизоляцией [8]. Однако в последние несколько лет пенобетон стал перспективным материалом также для конструкционных целей [7, 9], например, для стабилизации слабых грунтов [10, 11], базового слоя сэндвич-растворов для фундаментных плит [12]. , промышленные полы [13], а также приложения для строительства автомагистралей и метро [14, 15].

В связи с возрастающими экологическими проблемами крайне важно исследовать экологически чистые материалы для более широкого круга приложений, чтобы предложить реальные альтернативы наряду с традиционными материалами.

Пенобетон, являясь альтернативой обычному бетону, соответствует критериям принципов устойчивости строительных конструкций [16–18]. Общие принципы, основанные на концепции устойчивого развития применительно к жизненному циклу зданий и других строительных работ, определены в ISO 15392: 2008. Во-первых, пенобетон потребляет относительно небольшое количество сырья по отношению к количеству затвердевшего состояния. Во-вторых, при его производстве могут использоваться вторичные материалы, такие как летучая зола.Таким образом, пенобетон способствует утилизации отходов тепловых электростанций. В-третьих, пенобетон можно переработать и использовать вместо песка в изоляционных материалах. Кроме того, производство пенобетона нетоксично, и продукт не выделяет токсичных газов при воздействии огня. Наконец, это рентабельно не только на этапе строительства, но и на протяжении всего срока эксплуатации и обслуживания конструкции.

Помимо вклада в утилизацию отходов тепловых электростанций, добавление летучей золы улучшает удобоукладываемость свежей пенобетонной смеси и положительно влияет на усадку при высыхании [2, 19].С одной стороны, единственным недостатком этой минеральной добавки является более низкая ранняя прочность раствора по сравнению со смесью без золы-уноса [20]. С другой стороны, было доказано, что долговременная прочность улучшается [19, 21].

Несмотря на свои благоприятные и многообещающие прочностные и физические свойства, пенобетон по-прежнему используется в ограниченных масштабах, особенно в конструкциях. Это в основном связано с недостаточными знаниями о его механических свойствах и небольшим количеством исследований по его поведению при разрушении [22–28].

Основной целью данной работы является исследование механических характеристик пенобетона различной плотности (400–1400 кг / м 3 ). Был проведен ряд испытаний для проверки прочности на сжатие, модуля упругости, прочности на изгиб и характеристик разрушения материала после циклов замораживания-оттаивания.

2. Экспериментальная программа
2.1. Приготовление образцов и состав бетонной смеси

Материалами, использованными в этом исследовании, были портландцемент, летучая зола, вода и пенообразователь.Состав смеси представлен в Таблице 1. Промышленный портландцемент был CEM I 42,5 R [29] в соответствии с PN-EN 197-1: 2011. Его химический состав и физические свойства, измеренные в соответствии с PN-EN 196-6: 2011 и PN-EN 196-6: 2011-4, приведены в таблицах 2 и 3. Во всех экспериментах использовалась водопроводная вода. Прочность цемента на сжатие определяли согласно PN-EN 196-1: 2016-07 (таблица 3).

16 25,00

25,00

9016 9016


Символ смеси Содержание пенообразователя (л / 100 кг C) Цемент (кг) Летучая зола (кг) Вода (кг) Пенообразователь кг) (-)

FC1 2.00 25,00 0,00 10,50 0,50 0,44
FC2 4,00 25,00 0,00 10,00 90,00 10,00 0,40 0,00 9,50 1,50 0,44
FC4 8,00 25,00 0,00 9,00 2,00 0.44
FC5 10,00 25,00 0,00 8,50 2,50 0,44
FCA1 2,00 FCA2 4,00 25,00 1,25 10,00 1,00 0,44
FCA3 6,00 25,00 1.25 9,50 1,50 0,44
FCA4 8,00 25,00 1,25 9,00 2,00 0,44
2,50 0,44

1


SiO 2 9025 9024 905 905 905 9025 9024 902 3 CaO MgO SO 3 Na 2 O K 2 O Cl

4,9 2,9 63,3 1,3 2,8 0,1 0,9 0,05

902 (м 2 / кг) Удельный вес (г / см 3 ) Прочность на сжатие (МПа) Через дни


3840 306 2 28 28,0 58,0

Для улучшения удобоукладываемости и уменьшения усадки в некоторых смесях использовалась летучая зола. Используемая зола соответствует требованиям PN-EN 450-1: 2012. Его химический состав приведен в Таблице 4.

O 46 905 MgO


SiO 2 Al 2 O 3 Fe 2 SO 3 Na 2 O K 2 O

76.5 1,42 5,80 3,61 1,63 0,263 0,038 0,096

для производства пенообразователя. Жидкий агент находился под давлением воздуха примерно 5 бар, чтобы получить стабильную пену с плотностью примерно 50 кг / м 3 . Были приготовлены цементные пасты с 2 ÷ 10 литрами жидкого пенообразователя на 100 кг цемента.

Были использованы два разных типа бетонных смесей (один без летучей золы, а другой с летучей золой). Всего было изготовлено 10 смесей, по пять образцов на одну бетонную смесь (таблица 1). Для всех смесей использовалось постоянное соотношение (включая воду и жидкий пенообразователь; c — содержание цемента). Он был основан на результатах Джонса и Маккарти [7] и Xianjun et al. [30]. Целевые плотности затвердевшего пенобетона, которые будут произведены в этом исследовании, составляли от 400 до 1400 кг / м 3 .

Во всем процессе производства пенобетона необходимо тщательно учитывать плотность смеси, скорость вспенивания и другие факторы, чтобы приготовить высококачественный пенобетон. Ключевыми факторами для получения стабильного пенобетона были сжатие пенообразователя при стабильном давлении и постоянной скорости вращения смешивания компонентов.

Все образцы после заливки в стальные формы были накрыты и хранились в камере выдержки при 20 ± 1 ° C и влажности 95% в течение 24 часов.Затем образцы вынимали из форм и хранили в условиях окружающей среды (при 20 ± 1 ° C и 60 ± 10% влажности) в течение 28 или 42 дней перед испытанием.

2.2. Испытания

Пенобетон — относительно новый материал, и в настоящее время не существует стандартизированных методов испытаний для измерения его физических и механических свойств. Поэтому в этом исследовании были адаптированы процедуры подготовки образцов и методы испытаний, обычно используемые для обычного бетона. Прочность на сжатие, модуль упругости и предел прочности при изгибе определялись в соответствии с рекомендациями: PN-EN 12390-3: 2011 + AC: 2012, Инструкция НИИ Строительного института No.194/98, PN-EN 12390-13: 2014 и PN-EN 12390-5: 2011 соответственно. Плотность измерялась согласно PN-EN 12390-7: 2011.

Прочность на сжатие измерялась для стандартных кубов размером 150 × 150 × 150 мм, как указано в PN-EN 12390-3: 2011 + AC: 2012. Норма нагрузки была принята в соответствии с PN-EN 772-1: 2015 + A1: 2015 для ячеистых бетонных блоков.

Модуль упругости определяли в соответствии с Инструкцией НИИ строительства № 194/98 и PN-EN 12390-13: 2014-02 на цилиндрических образцах размером 150 × 300 мм.Скорость нагружения составляла 0,1 ± 0,05 МПа / с в соответствии с PN-EN 679: 2008 для блоков из ячеистого бетона. Два тензодатчика электрического сопротивления с измерительной длиной 100 мм были прикреплены к двум противоположным сторонам образцов на средней высоте. Для оценки модуля упругости записывалась характеристика напряжения-деформации.

Прочность на изгиб была испытана на установке трехточечного изгиба с балками 100 × 100 × 500 мм в соответствии с PN-EN 12390-5: 2011. Номинальное расстояние между опорами 300 мм.Ролики допускали свободное горизонтальное движение. Образцы нагружали с постоянной скоростью перемещения 0,1 мм / мин, что является оптимальным значением, определенным экспериментально.

Характеристики разложения в циклах замораживания-оттаивания оценивали для стандартных кубиков размером 150 × 150 × 150 мм. Прочность на сжатие определяли по методике, описанной ранее. Тестовая кампания состояла из 25 циклов замораживания-оттаивания. Каждый цикл включал охлаждение образцов до температуры −18 ° C в течение 2 ч.Затем образцы хранили замороженными в течение 8 часов при -18 ± 2 ° C и оттаивали в воде при температуре + 19 ° C ± 1 ° C в течение 4 часов. Контрольные образцы хранили в воде в качестве контрольных.

3. Результаты и обсуждение
3.1. Кажущаяся плотность

Дозировка пенообразователя сильно влияет на плотность смеси и затвердевшего пенобетона. На рисунке 1 показана зависимость между дозировкой пенообразователя и кажущейся плотностью затвердевшего пенобетона для образцов без летучей золы (FC) и других образцов с летучей золой (FCA).Кажущаяся плотность затвердевшего пенобетона сильно коррелирует с содержанием пены и составом цементного теста и воздушных пустот в свежей смеси. Увеличение содержания пены сопровождается увеличением объема свежего бетона, что приводит к снижению плотности затвердевшего пенобетона. Можно заметить, что существуют экспоненциальные отношения для образцов FC и FCA. Более того, результаты, полученные в FCA, показывают уровень плотности примерно на 20% выше, чем FCA. Это можно объяснить тем, что в образцах, содержащих летучую золу, процесс твердения замедлен.Физическая реакция между летучей золой и воздушными порами приводит к большему количеству воздушных пор, захваченных в смеси. Также было обнаружено, что смеси с содержанием пенообразователя более 10 литров на 100 кг цемента приводили к нестабильной смеси. Результаты были аппроксимированы полиномиальными функциями, как показано на рисунке 1.

3.2. Прочность на сжатие

Кубические образцы пенобетона, испытанные на сжатие, демонстрируют механизм разрушения, аналогичный обычному бетону. Типичная коническая картина разрушения после разрушения наблюдалась для всех образцов (рис. 2).

Прочность на сжатие пенобетона без золы (FC) и пенобетона с добавлением золы-уноса (FCA) как функция кажущейся плотности представлена ​​на рисунке 3. Можно заметить, что есть экспоненциальные зависимости для обоих FC и FCA; однако, похоже, есть разница между сильными сторонами, полученными на образцах FC и FCA. Образцы без золы кажутся более прочными, чем смеси, содержащие золу. Это связано с тем, что процесс твердения замедляется из-за наличия летучей золы [20].Кроме того, эта разница увеличивается вместе с плотностью. Полученные значения прочности на сжатие соответствуют результатам других работ [31–34]. Результаты были аппроксимированы полиномиальными функциями, как показано на рисунке 3.

3.3. Модуль упругости

Цилиндрические образцы пенобетона, испытанные на сжатие, демонстрируют механизм разрушения, аналогичный обычному бетону. Типичная коническая картина разрушения после разрушения наблюдалась для всех образцов (рис. 4).Зависимость напряжения от деформации цилиндрических образцов представлена ​​на рисунке 5. На графиках показаны зависимости в диапазоне от 0,2 МПа до разрушения в соответствии с PN-EN 12390-13: 2014-02.


На рисунке 6 показаны зависимости между модулем упругости пенобетона и его плотностью. Можно заметить, что существуют экспоненциальные отношения для FC и FCA. Образцы без летучей золы, по-видимому, имеют более высокий модуль упругости, чем смеси, содержащие летучую золу [35].Полученные значения модуля упругости соответствуют результатам работ Олдриджа [8].

3.4. Прочность на изгиб

На рисунке 7 представлена ​​зависимость между плотностью пенобетона и прочностью на изгиб. Испытания проводились на образцах без летучей золы. На рис. 7 представлены также результаты экспериментов, проведенных авторами и опубликованных в [23–28]. Можно отметить снижение предела прочности при изгибе с уменьшением плотности пенобетона.Значения прочности на изгиб соответствуют результатам работ Mydin и Wang [31] и Soleimanzadeh и Mydin [36].

3.5. Характеристики разложения при циклах замораживания-оттаивания

На рисунке 8 показаны результаты прочности пенобетона на сжатие после 25 циклов замораживания-оттаивания в зависимости от плотности. В качестве справки, результаты для необработанных образцов показаны на рисунке 8. Обработка образцов замораживанием-оттаиванием оказывает лишь незначительное влияние на прочность на сжатие пенобетона.Значения прочности, полученные для образцов, подвергнутых циклам замораживания-оттаивания, были примерно на 15% ниже. Результаты были аппроксимированы полиномиальными функциями, как показано на рисунке 8.

4. Выводы

Пенобетон может достигать гораздо более низкой плотности (от 400 до 1400 кг / м 3 ) по сравнению с обычным бетоном. Была проведена серия испытаний для проверки механических параметров пенобетона: прочности на сжатие, прочности на изгиб и модуля упругости.Кроме того, было исследовано влияние 25 циклов замораживания и оттаивания на прочность на сжатие.

Основные выводы, которые можно сделать из этого исследования, следующие: (i) Дозировка пенообразователя влияет на плотность смеси и затвердевшего пенобетона. Плотность пенобетона сильно коррелирует с содержанием пены в смеси. (Ii) прочность на сжатие, модуль упругости и прочность на изгиб уменьшаются с уменьшением плотности пенобетона; для описания этих отношений были предложены полиномиальные функции.(iii) Прочность на сжатие и модуль упругости пенобетона были немного уменьшены при добавлении 5% летучей золы. (iv) Прочность на сжатие пенобетона, подвергнутого испытаниям на замерзание-оттаивание, показывает значения только примерно на 15% ниже по сравнению с к необработанным образцам.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Эта работа была поддержана текущим исследовательским проектом «Стабилизация слабого грунта путем нанесения слоя пенобетона, контактирующего с грунтом» (LIDER / 022/537 / L-4 / NCBR / 2013), финансируемого Национальный центр исследований и разработок в рамках программы LIDER.Авторы с благодарностью признают навыки и приверженность лаборанта Альфреда Кукиелки, без которого настоящее исследование не могло бы быть успешно завершено.

Применение легкого пенобетона


Блоки и панели из легкого пенобетона (CLC)

Пенобетон

EABASSOC используется для изготовления легких блоков во многих странах, включая Индию, Китай и Таиланд. Из легких пенобетонных блоков в основном возводят перегородки.Легкость блоков означает, что они несут минимальную нагрузку на здание. Пеноблоки также обеспечивают хорошую теплоизоляцию и звукоизоляцию. Современные автоматизированные заводы по производству пенобетонных блоков используют станки для резки проволоки для эффективной резки больших блоков на маленькие. Создание завода по производству базовых пенобетонных блоков (ячеистых / CLC) требует минимальных финансовых затрат на оборудование. Блоки можно изготавливать практически любого размера. Популярные форматы: 100 x 200 x (400/500/600 мм).

Панели

Pre-Cast также могут быть изготовлены из пенобетона. Последние инновации — это блокирующие панели размером 60 x 50 см и полые блокирующие панели 1,2 м. Они могут быть встроены в ненесущую стену намного быстрее, чем небольшие блоки, при этом снижается общая нагрузка на здание.

Пенобетон

EABASSOC имеет низкое водопоглощение и структуру с закрытыми порами. Во время дождя вода не проходит сквозь пенобетон.

Пенобетон для заполнения пустот

Пенобетон

EABASSOC также очень полезен для заполнения пустот и ликвидации пустот.Поскольку он очень текучий, он разливается даже в самые труднодоступные места. Его можно использовать для плановых работ, а также в чрезвычайных ситуациях, чтобы очень быстро обеспечить стабильность и поддержку.

Пенобетон

EABASSOC использовался для заполнения старых канализационных сетей, шахт, подвалов, резервуаров для хранения, подземных переходов, воронок и пустот под дорогами, вызванных сильным дождем. Его можно наносить даже через небольшие отверстия, что значительно упрощает и удешевляет работу по сравнению с другими методами. При необходимости его также можно перекачать на значительное расстояние.

При использовании для заполнения пустот пенобетон может быть классифицирован как текучий заполнитель, контролируемый низкопрочный материал (CLSM) или контролируемый низкопрочный материал низкой плотности (LD-CLSM).

ПОДРОБНЕЕ: Использование пенобетона для заполнения пустот (pdf).

Пенобетонная кровельная изоляция

В течение многих лет пенобетон EABASSOC поставлялся для изоляции кровли на Ближнем Востоке. Выбирается смесь с низкой плотностью, и получаемое в результате содержание воздуха дает материалу отличные теплоизоляционные свойства.Низкая плотность также имеет то преимущество, что она незначительно увеличивает общий вес крыши.

Кровельная изоляция , вероятно, является наиболее распространенным применением пенобетона. Пенобетон имеет два преимущества при использовании его для кровли. Первое преимущество заключается в том, что он обеспечивает высокую степень теплоизоляции . Второе преимущество заключается в том, что с его помощью можно укладывать плоскую крышу к водопаду, то есть обеспечивать уклон для дренажа. В странах, где крыши плоские и где поверхности крыш используются в повседневной жизни, пенобетон достаточно прочен, чтобы выдерживать пешеходное или даже автомобильное движение по крыше. Пенобетон также намного легче откосов из растворных стяжек. Это означает, что крыша с уклоном из пенобетона оказывает меньшую нагрузку на конструкцию здания.

Типичная спецификация для изоляции крыши показана здесь:

  1. Конструкционная плита
  2. Легкий пенобетон, уложенный до обрыва (50-200 мм и более)
  3. Цементно-песчаная стяжка (20 мм)
  4. Водонепроницаемая мембрана
  5. Миномет
  6. Плитка (цементная или мозаичная, с шагом под компенсатор с герметиком)

ПОДРОБНЕЕ: Использование пенобетона для утепления кровли (pdf).

Легкий абатмент мостовидного протеза из пенобетона

Пенобетон

EABASSOC особенно подходит для опор мостовидного протеза , поскольку он не создает больших поперечных нагрузок, которые могут быть проблемой при использовании традиционных гранулированных материалов.

При использовании традиционных абатментов возникает сильное боковое давление на стенки мостовидного протеза, вызванное используемыми материалами и их уплотнением.

При использовании пенобетона EABASSOC боковая нагрузка практически исключается, поэтому стены моста не обязательно должны быть такими толстыми.Это, в свою очередь, означает, что фундамент стен можно сделать менее массивным. Огромная экономия средств может быть достигнута за счет уменьшения толщины стен и размера фундамента.

Традиционные устои также подвержены оседанию, как из-за уплотнения агрегатов при перемещении, так и из-за погружения всей конструкции в грунт, если грунт мягкий.

Такое оседание и проседание вызывает просадку дороги, что требует дорогостоящих ремонтных работ.При использовании пенобетона EABASSOC не происходит оседания, а оседание уменьшается за счет регулировки веса опоры путем выбора подходящего состава смеси.

ПОДРОБНЕЕ: Использование пенобетона для опор мостовидных протезов (pdf).

Пенобетон для восстановления траншеи

Пенобетон

EABASSOC — идеальный материал для восстановления траншеи (заполнение траншей, вырытых на дорогах при прокладке труб или ремонте). Традиционные способы засыпки траншей на дорогах, т.е.е. использование гранулированных наполнителей приводит к оседанию и повреждению дороги и, возможно, труб. С пенобетоном осадки нет; а поскольку пенобетон очень текучий, он заполняет все пустоты и полости в стенках траншеи.

Кроме того, отличные характеристики распределения нагрузки пенобетона EABASSOC означают, что осевые нагрузки не передаются непосредственно на сервисы в траншее, поэтому трубы не повреждаются под тяжестью движения.

Традиционные сыпучие материалы для засыпки требуют уплотнения.Пенобетон EABASSOC не требует уплотнения, поэтому нет необходимости использовать какие-либо уплотнители. Это важно, поскольку использование таких инструментов может вызвать у рабочих заболевания, связанные с вибрацией.

Благодаря своим изоляционным свойствам пенобетон является отличным материалом для обратной засыпки вокруг труб горячего водоснабжения, которые используются в коммунальных системах отопления или комбинированных теплоэнергетических системах (ТЭЦ).

ПОДРОБНЕЕ: Использование пенобетона для восстановления траншей (pdf).

Прочие применения легкого пенобетона

Дорожная подбаза

Пенобетон

EABASSOC можно использовать для уменьшения веса дорожных конструкций.Это помогает решить проблему, когда традиционно тяжелые дорожные конструкции вызывают сильное оседание дороги, особенно на участках с мягким грунтом. За счет строительства дорожного основания из легкого материала общий вес конструкции может быть значительно снижен. Поскольку пенобетон EABASSOC очень универсален и имеет широкий диапазон плотностей, он оказался идеальным и экономичным материалом для решения этой проблемы.

Мостовидные абатменты / Укрепление мостовидных протезов

Пенобетон

особенно полезен при устройстве опор мостов на мягком грунте.Это связано с его легкостью и низкой боковой силой после схватывания. Использование пенобетона EABASSOC для создания пандуса к настилу моста может уменьшить а) размер опорных стен, б) размер фундамента стены и в) количество свай, необходимых для поддержки опорной конструкции. Это обеспечивает огромную косвенную экономию затрат по проекту по сравнению со стоимостью использования традиционных гранулированных заполняющих материалов.

Мосты могут быть усилены пенобетоном, например, путем заполнения внутренних опор каменных арочных мостов, ограждения стальных балок или даже заполнения целых секций моста.

Конструкция стены

Пенобетон

EABASSOC можно использовать для монолитных стен . Они могут быть изготовлены с использованием традиционных опалубок или полых форм из полистирола. Это обеспечивает быстрый и дешевый метод строительства с дополнительным преимуществом отличной теплоизоляции. Стена из пенобетона плотностью 1200 кг / м 3 обеспечивает такой же уровень теплоизоляции , как и стена из плотного бетона, толщина которого в 5 раз превышает толщину пенобетона и в 10 раз превышает его количество. .

Туннелирование

Пенобетон

EABASSOC — идеальный материал для строительства и ремонта туннелей . Применяется как для заполнения пустот, образовавшихся и обнаженных при проходке туннелей, так и для затирки готовых работ, в том числе зазоров за облицовкой тоннеля.

Конструкция пола

Пенобетон

EABASSOC является очень хорошим материалом для устройства полов. Он идеально подходит для быстрого и недорогого строительства подэтажных перекрытий и может использоваться для выравнивания поверхности и подъемных этажей , а также для изоляции .

Легкие сборные блоки

Традиционный метод изготовления легких сборных блоков включает добавление алюминиевого порошка во влажную строительную смесь с последующим автоклавированием. Это не пользуется популярностью из-за загрязнения окружающей среды. Пенобетон EABASSOC является экологически чистой альтернативой, поскольку при его производстве нет отходов, а все ингредиенты не опасны.

Земляные работы и стабилизация

Пенобетон

EABASSOC может быть использован в различных типах земельных участков , в том числе укрепляющих насыпей после оползней, схем уширения трассы , мелиорации и заливки гаваней.Поскольку он не проникает в мягкий грунт, реконструкция может начаться гораздо раньше после нанесения, чем при использовании традиционных методов. По тем же причинам он также идеально подходит для дорожных фундаментов.

Противопожарные аппараты

Превосходные огнестойкие свойства пенобетона EABASSOC делают его идеальным материалом для противопожарных разрывов в зданиях с большими неразделенными пространствами. Применяется для предотвращения проникновения пламени через служебное пространство между полом и потолком в современном строительстве, а также для защиты деревянных полов в старых домах.

Звукоизоляция

Пенобетон

EABASSOC уменьшает прохождение звука как от фонового шума, так и от ударов. Таким образом, это идеальный материал для внутренних стен и подвесных полов многоэтажных зданий, особенно коммунальных.

Разное и художественное

Хотя пенобетон EABASSOC чаще всего используется в строительстве и гражданском строительстве, он также может быть использован в декоративных и художественных целях. Среди прочего, он использовался для украшения сада, декоративных панно, скульптур и реквизита.

Основы ячеистого бетона | Richway

Если вы только начинаете работать с ячеистым бетоном или у вас есть базовые вопросы о ячеистом бетоне, это отличное место для начала. Мы объясним, что такое ячеистый бетон, для чего он используется, а также расскажем о часто задаваемых вопросах. Если после прочтения этой страницы у вас остались вопросы, позвоните нам, чтобы обсудить ваши вопросы, или посетите другие страницы наших ресурсов, чтобы узнать больше о ячеистом бетоне.

Что такое ячеистый бетон?

Ячеистый бетон низкой плотности, как определено в главе 523 ACI.1, представляет собой бетон, изготовленный из гидравлического цемента, воды и предварительно сформованной пены для образования затвердевшего материала, имеющего плотность в сухом состоянии 50 фунтов на кубический фут (PCF) или меньше.

Хотя определение ACI определяет ячеистый бетон с низкой плотностью и плотностью ниже 50 фунтов на квадратный фут, ячеистый бетон может иметь плотность от 20 до 120 фунтов на квадратный фут.

В более широком смысле любой цементный раствор или вяжущий материал, в котором используется пена, генерируемая извне, для увеличения содержания воздуха выше 10%, может считаться ячеистым бетоном.Ячеистый бетон может иметь другие названия, включая пеноцемент, пенобетон или легкую текучую заливку.

Несмотря на то, что существует ряд легких вяжущих материалов, ключевым отличительным фактором между ячеистым бетоном и другими легкими вяжущими материалами является использование пены, образующейся извне, для уменьшения плотности. Вероятно, наиболее близким материалом к ​​ячеистому бетону является газобетон автоклавного твердения (AAC).

Основными отличиями являются процессы, используемые для создания воздуха в материале, и необходимое оборудование.AAC использует химическую реакцию внутри самой суспензии для образования воздушных пустот для снижения плотности. Однако производство ячеистого бетона с пеной, генерируемой извне, обеспечивает более универсальный материал за небольшую часть капитальных затрат, необходимых для оборудования.

Применение и преимущества ячеистого бетона

Ячеистый бетон имеет множество применений и не имеет единственного преимущества. В зависимости от области применения он может быть выбран из-за его теплоизоляционных и звукоизоляционных свойств, прокачиваемости и текучести, простоты обращения из-за его небольшого веса или в качестве экономичной альтернативы заполняющим материалам.Во всем мире ячеистый бетон используется в строительстве, например, для настилов крыш и настилов пола, а также в геотехнических приложениях, таких как заполнение кольцевого пространства в футеровке скольжения и отказ от заполнения пустот. Ячеистый бетон также можно найти в архитектуре и сборных железобетонных изделиях. Ниже приведены наиболее распространенные области применения ячеистого бетона; однако это не исчерпывающий список.

Заполнение пустот: Воронки, колодцы, туннели, цистерны, заброшенные инженерные трубы, затирка кольцевого раствора.Легко течет и обеспечивает меньший вес на почве.

Восстановление почвы: Когда существуют плохие грунтовые условия, ячеистый бетон можно использовать для создания прочного основания, уменьшая нагрузку на грунт.

Заливка траншеи для инженерных коммуникаций: Защищает и поддерживает инженерные коммуникации, а также снижает или устраняет необходимость в уплотнении.

Альтернатива текучей засыпке / геопеной: Для любых применений, где используются текучие засыпки или блоки из геопены, ячеистый бетон является отличной альтернативой и во многих случаях предпочтительным материалом.

Засыпка траншеи водовыпуска: Предотвращает последующее оседание почвы и последующие провалы на дороге.

Заполнение абатмента моста / эстакады: Устраняет оседание после строительства. Поскольку ячеистый бетон не требует уплотнения, он не сжимается со временем, создавая «провал» на подходе к мосту или эстакаде. Кроме того, практически исключаются боковые нагрузки на существующий абатмент.

Подпорная стена / Засыпка стены MSE: Снижение боковой нагрузки является основным преимуществом.Ячеистый бетон также может значительно снизить потенциальное повреждение георешетки во время засыпки.

Панели ограждения вдоль автомагистралей: Для звукового контроля и визуального блокирования. Потенциал экономии за счет снижения веса.

Противоударные барьеры / Поглощение энергии: Предварительно отлитые кубики переменной плотности или залить их на месте.

Настилы пола: Снижает вес конструкции при сохранении качества бетонного пола. Используется для выравнивания и замены смесей на основе гипса.

Настилы крыши: Уменьшает вес и обеспечивает тепло- и звукоизоляцию. Возможны умеренные уклоны.

Сборные железобетонные изделия: Снижает вес и стоимость. Снижает транспортные расходы / позволяет загружать больше штук на грузовик. Более легкий монтаж.

Тепловая засыпка и засыпка под плиту: Обеспечивает теплоизоляцию и водонепроницаемость, а также снижает гидростатическую боковую нагрузку на фундамент.

I Наружные стены: Отливка на месте или сборка панелей.Снижает вес и стоимость ниже бетонной стены полной плотности. Более звукоизоляция и огнестойкость, чем каркасная стена.

Основание подпорной стены: Правильная конструкция смеси должна быть самовыравнивающейся и может значительно ускорить строительство основания и улучшить грузоподъемность.

Палубы тротуаров, патио и крыльца: Снижает вес и стоимость.

Резные скульптуры из бетона: Ячеистый бетон в диапазоне 40-60 PCF можно вырезать и формировать с помощью цепных пил, ручных инструментов и других методов для создания произведений искусства из уникального материала.

Часто задаваемые вопросы по ячеистому бетону

Примечание. Следующие ответы верны, насколько нам известно, но могут не применяться в определенных приложениях или ситуациях. Большинство из них предназначены для предоставления общей информации, а не для информации о конкретном проекте или приложении.

Каков процесс изготовления ячеистого бетона?
Есть два метода производства ячеистого бетона. Первый — это периодический метод производства, при котором пена, образующаяся извне, вводится в барабан миксера в течение расчетного периода времени.Второй — это метод непрерывного производства, при котором пена впрыскивается в линию на напорной стороне насоса. Richway предлагает оборудование для обоих методов производства.

Какова прочность ячеистого бетона?
По мере уменьшения плотности уменьшается и прочность на сжатие. См. Таблицы и диаграммы прочности для получения более подробной информации, но, например, плотность 60 фунтов на квадратный фут будет иметь прочность в диапазоне от 600 до 1000 фунтов на квадратный дюйм.

Является ли очистка грузовика проблемой при использовании пакетного метода?
Обычно это будет проще, но если есть цементная паста без какой-либо пены, покрывающей барабан, это может быть труднее.

Какой установлен срок для ячеистого бетона?

Время схватывания ячеистого бетона обычно немного больше по сравнению с «обычным» бетоном из-за поверхностно-активных веществ, используемых при производстве пены. Однако, как и все, что производится с портландцементом, время изготовления и размещения ограничено. Как правило, мы рекомендуем ограничивать рабочее время примерно четырьмя часами после смешивания Portland с водой или примерно тремя часами после добавления пены.По прошествии этого времени материал следует оставить в покое, чтобы продолжить процесс схватывания. Продолжение перекачивания или перемещения материала может привести к его разрушению. Однако установленное время может варьироваться в зависимости от области применения, условий рабочей площадки и использования замедлителей или ускорителей.

Я немного прочитал о ячеистом бетоне, и здесь используется термин «предварительно сформированная пена». Почему вы используете термин «созданный извне»?
Мы думаем, что «производимый извне» — это гораздо более ясная терминология и не подразумевает жесткую пену на нефтяной основе или что-то, что было получено задолго до ее использования.Пена имеет консистенцию плотной густой пены шампуня и образуется «на ходу», когда она смешивается или впрыскивается в смеситель. Он генерируется извне, а не внутри самого смесителя, как в случае с воздухововлекающим агентом.

Сколько цементного порошка используется на дворе ячеистого бетона?
Если чистый цементный раствор используется с соотношением 0,50 в / ц, в базовом растворе на ярд будет примерно 2060 фунтов цемента и 1030 фунтов воды с плотностью 115 PCF.Если затем добавить пену до плотности 30 PCF, у нас будет 3,65 ярда материала 30 PCF, с примерно 565 фунтами цемента на ярд. У нас есть калькулятор расчета смеси, доступный на нашем веб-сайте, который рассчитывает массу партии смеси, время дозирования пены и анализ сценария затрат.

Можно ли использовать летучую золу или другие пуццоланы в ячеистом бетоне?
Да. Как и в случае с бетоном стандартной плотности, окончательные свойства материала будут затронуты, как правило, так же, как альтернативные пуццоланы влияют на «нормальный» бетон.Что касается летучей золы, следует отметить, что зола с высоким содержанием углерода может разрушать пену, поэтому ее следует избегать.


Могу ли я использовать редукторы воды и другие добавки?
Да, можно использовать разбавители воды, которые помогут с диспергированием и смачиванием цементного порошка перед добавлением пены. Также можно использовать большинство других добавок, но во всех случаях тесты следует проводить до того, как будет завершен дизайн смеси. Некоторые суперпластификаторы могут разрушать пену, поэтому необходимо провести тщательное тестирование.Воздухововлекающие добавки обычно не используются при производстве суспензии для изготовления ячеистого бетона, потому что пена — это воздух, добавляемый к смеси.

А как насчет размещения и отделки?
Ячеистый бетон легко перекачивается. При высоком содержании воды и низкой плотности он может быть фактически самовыравнивающимся, но его всегда легче перемещать, чем бетон стандартной плотности. Обычно его легко отделывать, но при некоторых значениях плотности он липкий и его трудно затирать шпателем.Как правило, для геотехнических применений отделка не требуется.

Есть проблемы с перекачкой?
Насосы для ячеистого бетона и очень хорошая текучесть.

Просмотреть все ресурсы

Типы пенобетона — Пенобетонные машины

Материал с названием «пенобетон» используется в строительстве для самых разных целей. В этом материале мы рассмотрим виды пенобетона.

История пенобетона

Архитектор из Швеции А.Эрикссон получил технологию изготовления бетона с параметрами, присущими дереву, в начале 20 века. В 1924 году эта технология получила международный патент и официальное признание. Промышленное производство автоклавного ячеистого бетона началось в 1929 году в Швеции. С этого времени и началось использование пенобетона в строительстве. Сегодня в мире насчитывается более 250 заводов по производству автоклавного газобетона более чем в 40 странах мира. Которые производят самые разные виды пенобетона.Объем добычи превышает 51 миллион кубометров. м. продукции в год. Эта отрасль строительных материалов довольно динамично развивается, что в условиях жесткой конкуренции привело к созданию качественных строительных материалов, пользующихся большим спросом во всем мире.

Ячеистый бетон применяли в России в середине пятидесятых годов прошлого века. Но до недавнего времени этот материал в России использовался в основном как утеплитель для крыш и реже — в промышленном строительстве.В частном домостроении пенобетон начали использовать только в начале 90-х годов. Жилые дома, в которых используются различные виды пенобетона, отличаются высоким уровнем комфорта.

Пенобетон разные виды

Пена — это легкий ячеистый бетон, получаемый в результате затвердевания раствора, состоящего из цемента, песка, воды и пены. Пена обеспечивает необходимое содержание и равномерное распределение пузырьков воздуха в бетоне. Пену обычно получают из пенообразователя (пенообразователя).В качестве вспенивателя используются различные органические и неорганические соединения. Их получают на основе натурального белка или при производстве моющих средств.

Пенобетон

— недорогой, экономичный, прочный, экологически чистый, биологически стойкий, экологически чистый для древесины, но при этом негорючий и долговечный. Во многих странах пеноблоки называют «биоблоками», потому что в качестве сырья для их производства используются только экологически чистые и натуральные материалы.Пенобетон сочетает в себе преимущества камня и дерева: прочность, легкость, жаростойкость и не требует совместимости с другими строительными материалами. Оштукатурил, отделал вагонкой и другими отделочными материалами, покрасил фасадные и внутренние краски. Возможность производить пенобетон необходимого удельного веса, заданной прочности, необходимой термостойкости, желаемой формы и объема делает его привлекательным для производства огромного вида строительных изделий. В качестве конструкционного или теплоизоляционного материала можно использовать разные виды пенобетона.С точки зрения долговечности пенобетон в отличие от минеральной ваты или пенобетона, теряя со временем свои свойства, улучшает теплоизоляционные и механические характеристики.

Различные виды пенобетона делятся по следующим характеристикам:

  1. По своему функциональному назначению пенобетон делится на три группы: теплоизоляционные; теплоизоляционно-конструкционные и конструкционные.
  2. По виду связующего. В технологии производства пенобетона в качестве вяжущего в основном используют цементы и известь, реже гипс.
  3. По типу кремнеземного компонента. Чаще всего используется кварцевый песок, а также зола-унос — после сжигания угля, металлическая зола и отходы глиноземного производства.
  4. Метод отверждения подразделяется на неавтоклавный, предусматривающий пропаривание, электрический нагрев или другие типы нагрева при нормальном давлении, и автоклавный метод, который затвердевает при повышенном давлении и температуре.

Преимущества пенобетона

Корпус из пенобетона повышенной комфортности и следующие эксплуатационные характеристики:

  • в стенах дома «дышат» и не потеют
  • зимой стены согревают, летом — прохладу
  • нет «мостика холода»
  • отличная звукоизоляция до 60 дБ.
  • экономия энергии на отопление
  • экономия энергии на кондиционирование воздуха
  • идеально ровная поверхность для любого типа отделки
  • устойчивость к высоким температурам
  • отличная удобоукладываемость

Материалы для производства пенобетона

Вяжущим для цементного пенобетона обычно является портландцемент. При производстве автоклавного пенобетона также используется негашеная известь.

Кремнеземный компонент (молотый кварцевый песок, зола термоэнергетики и измельченный гранулированный доменный шлак) снижает затраты на связующее, усадку пенобетона и улучшает качество конечного продукта.Кварцевый песок обычно измельчают мокрым способом и вносят в виде песчаной суспензии. Измельчение увеличивает удельную поверхность кремнеземистого компонента и увеличивает его химическую активность.

Все виды пенобетона производятся путем смешивания отдельно приготовленных смесей растворов и пены, представляющей собой пузырьки воздуха. Раствор получают из связующего (цемента или какой-то извести) кремнеземистого компонента и обычной воды.

Пена готовится в пеногенераторах с помощью насосов с центробежным механизмом из смеси воды и пенообразователя.Пенообразователь содержит поверхностно-активные вещества. Так же пену можно получить непосредственно с помощью установки для пенобетона. Различные типы пенобетона содержат клей-книфол, таросапоин или алюмосульфонафтеновые, органические и синтетические вспениватели.

Есть вопросы или комментарии?

Производство современных строительных материалов — это не обязательно большой производственный цех, высокие трубы и облака загрязняющих веществ. И оборудование для этого производства тоже не обязательно должно быть произведено гигантами машиностроения… Не умаляя достоинств других стройматериалов, хотелось бы обратить внимание на различные виды пенобетона.Разработанный еще в начале 30-х годов прошлого века, сейчас этот материал переживает второе рождение.

Наши технические разработки, нехватка персонала и практически полное отсутствие накладных расходов делают стоимость нашего оборудования на 30-40% ниже стоимости аналогичных установок, где можно получить различные виды пенобетона, продаваемые на рынке строительной техники. сегодня. Количество деталей и средств автоматизации сведено к минимуму, поэтому в установке отсутствуют узлы, создающие опасность какой-либо частой поломки.Будем рады ответить на все ваши вопросы и предложения.

Первую установку по производству пенобетона мы смонтировали в 2005 году и с тех пор работаем на ней без сбоев. Каждая производимая нами установка для пенобетона проходит наши испытания и обкатку, что дает дополнительные основания для гарантии надежности нашего оборудования, в котором практически нечего ломать.

Вспененный цемент — PetroWiki

Из вспененного цемента можно приготовить растворы плотностью от 4 до 18 фунтов / галлон.Вспененный цемент — это смесь цементного раствора, пенообразователя и газа. Вспененный цемент образуется, когда газ, обычно азот, нагнетается под высоким давлением в базовый раствор, который включает пенообразователь и стабилизатор пены.

Использование азота

Газообразный азот можно считать инертным, он не вступает в реакцию и не изменяет образование продуктов гидратации цемента. В особых случаях вместо азота можно использовать сжатый воздух для создания вспененного цемента. В целом, из-за давления, скорости и объемов газа азотное насосное оборудование обеспечивает более надежную подачу газа.В результате образуется чрезвычайно устойчивая и легкая суспензия, напоминающая серую пену для бритья. Когда вспененные суспензии правильно перемешиваются и измельчаются, они содержат крошечные дискретные пузырьки, которые не сливаются или не мигрируют. Поскольку образующиеся пузырьки не связаны между собой, они образуют цементную матрицу низкой плотности с низкой проницаемостью и относительно высокой прочностью.

Кандидаты на пеноцемент

Практически любая работа по цементированию нефтяных скважин может рассматриваться как кандидат на применение вспененного цементирования, включая функции первичного и восстановительного цементирования на суше и на море, а также в вертикальных или горизонтальных скважинах.

Преимущества вспененного цемента

Несмотря на то, что его конструкция и выполнение могут быть более сложными, чем при выполнении стандартных работ, вспененный цемент имеет множество преимуществ, позволяющих преодолеть эти проблемы, поскольку он:

  • Легкая
  • Обеспечивает отличное соотношение прочности и плотности
  • Пластичный
  • Улучшает удаление грязи
  • Расширяется
  • Помогает предотвратить миграцию газа
  • Улучшает зональную изоляцию
  • Обеспечивает контроль водоотдачи
  • Подходит для выдавливания и закупоривания
  • Изолирует
  • Стабилизирует при высоких температурах
  • Совместима с непортландцементами
  • Упрощает логистику добавок
  • Увеличивает объем
  • Обладает низкой проницаемостью
  • Устойчив к перетокам
  • Обладает синергетическим эффектом с некоторыми добавками, что усиливает свойства добавки

Недостатки вспененного цементирования

Недостатком вспененного цемента является необходимость в специализированном цементировочном оборудовании как для полевого применения, так и для лабораторных испытаний.

Список литературы

См. Также

Конструкция цементного раствора

Цементировочные работы

PEH: Цементирование

Интересные статьи в OnePetro

Внешние ссылки

Материальный дизайн и оценка характеристик пенобетона для цифрового производства

Реферат

Трехмерная (3D) печать пенобетоном, который известен своими отличными физико-механическими свойствами, еще не исследовался целенаправленно.В данной статье представлен методический подход к проектированию смесей из пенобетонов для 3D-печати и систематическое исследование возможностей применения этого типа материала в цифровом строительстве. Три различных пенобетонных состава с соотношением воды к вяжущему между 0,33–0,36 и плотностью от 1100 до 1580 кг / м 3 в свежем состоянии были произведены методом предварительного вспенивания с использованием пенообразователя на белковой основе. На основе испытаний в свежем состоянии, включая 3D-печать как таковую, был определен оптимальный состав и охарактеризована его прочность на сжатие и изгиб.Пенобетон, пригодный для печати, показал низкую теплопроводность и относительно высокую прочность на сжатие, превышающую 10 МПа; Таким образом, он соответствовал требованиям, предъявляемым к строительным материалам, используемым для несущих стеновых элементов в многоэтажных домах. Таким образом, он подходит для приложений 3D-печати, одновременно выполняя как несущие, так и изолирующие функции.

Ключевые слова: цифровое изготовление , 3D-печать, пенобетон, дизайн смеси, испытание материалов

1. Введение

Пенобетон (FC) — это легкий цементный материал с ячеистой структурой, получаемый путем введения воздушных пустот в строительный раствор или цемент вставить.Он может иметь плотность от 200 до 1900 кг / м 3 . Пенобетон плотностью менее 400 кг / м 3 используется в основном в качестве наполнителя или изоляционного материала [1,2,3]. Из-за технической и инженерной незнания большинства практиков и предполагаемых трудностей в достижении достаточно высокой прочности в последние несколько десятилетий пенобетон в значительной степени игнорировался для использования в конструкционных приложениях. В большинстве случаев пенобетон использовался для заполнения пустот, выполнял функцию теплоизоляции и действовал как акустический глушитель.Достижения в области химических и механических технологий вспенивания, добавок в бетон и других добавок значительно улучшили стабильность и механические свойства пенобетона. В настоящее время потенциал этого материала для структурного применения хорошо известен, и многочисленные исследовательские проекты были сосредоточены на улучшении свойств пенобетона, особенно в отношении его механических характеристик несущей способности [2,4,5].

Группы, работающие с предвидением в области цифрового производства, определили будущую потребность в устойчивых строительных материалах, которые являются экономически эффективными и экологически чистыми [6].Ожидается, что после завершения предварительных исследований и описания фундаментальных принципов цифрового производства из вяжущих материалов следующим шагом станет переосмысление технологии, включая сокращение материальных затрат и воздействия на окружающую среду. Пенобетон имеет небольшой удельный вес, что снижает собственные нагрузки и, таким образом, позволяет уменьшить размеры фундамента и количество арматуры. Кроме того, низкая теплопроводность пенобетона позволяет сократить использование дополнительных изоляционных материалов, которые в основном основаны на нефтехимических полимерах с высоким содержанием CO 2 и очень ограниченной пригодностью для вторичной переработки.В отличие от таких материалов, пенобетон состоит из минеральных компонентов с незначительным содержанием химических примесей [7]. Кроме того, поскольку применение дополнительных изоляционных панелей может больше не потребоваться, можно ожидать значительного сокращения энергопотребления и времени на транспортировку и монтаж, а также снижение уровня шума на строительной площадке. Подводя итог, пенобетон признан универсальным строительным материалом, экологически чистым и технически эффективным.

Концепция 3D-печати бетона на месте (CONPrint3D), разработанная в Техническом университете Дрездена, способствует реализации преимуществ аддитивных технологий в строительной отрасли [8]. В отличие от концепций, продвигающих печать интегрированной опалубки, CONPrint3D подчеркивает сокращение второстепенных шагов, таких как заполнение печатных форм [9,10]. Эта технология позволяет печатать стены большой толщины, заменяя кладку.Применение пенобетона в рамках концепции CONPrint3D является многообещающим и потенциально позволяет изготавливать несущие стены и конструктивные элементы с такими свойствами, как превосходная теплоизоляция, звукопоглощение и огнестойкость [11,12]. Авторы ожидают, что применение различных материалов на основе цемента в 3D-печати бетона упростит формулирование новых строительных стандартов и перейдет к полной автоматизации строительных процессов. Изменяя плотность и толщину стен из пенобетона, напечатанных на 3D-принтере, можно полностью или частично отказаться от дополнительных систем изоляции.Еще одним аспектом, облегчающим применение пенобетона в качестве материала, выполняющего как изоляционные, так и структурные функции, является легкость его переработки и утилизации.

В литературе есть пример, описывающий автоматическое нанесение пенобетона на вертикальные поверхности методом экструзии [13]. Авторы поместили пенобетон на голые стены существующих зданий, чтобы получить изоляцию фасада, которая может быть переработана и свободна по дизайну и форме.Использованный материал обладал видимой стабильностью формы, прочностные характеристики не изучались.

Faliano et al. В [14,15] описаны пенобетоны с плотностью в сухом состоянии от 400 до 800 кг / м 3 и прочностью на сжатие от 1,5 до 9 МПа, которые, кроме того, сохраняют стабильность размеров после экструзии. Отношение воды к цементу (в / ц) было установлено на 0,3 во всех смесях. Ни наполнители, ни заполнители не использовались. Предварительно сформированная пена была приготовлена ​​с пенообразователем на белковой основе.Исследование дает широкий спектр результатов, связанных с влиянием условий отверждения на прочность на растяжение и сжатие. Однако описанная экспериментальная процедура не представляла типичных процедур 3D-печати с помощью роботизированных печатающих головок. Материал был скорее заполнен стальной опалубкой и вручную вытеснен с опалубки на ранней стадии гидратации. Техника осаждения, использованная Faliano et al. имитирует автоматическую экструзию и обеспечивает первое заполнение поведения материала с точки зрения стабильности формы и развития прочности в сыром виде.

Не существует стандартного способа измерения свойств сборки. Как правило, возможность сборки оценивается путем печати определенного количества слоев с определенной скоростью [16,17,18,19]. На данный момент трудно оценить возможную конструктивность пенобетона, разработанного Faliano et al. [11,12], поскольку время покоя пенобетона и его реологические характеристики в свежем состоянии не уточняются. В исследовании подчеркивается использование агентов, повышающих вязкость (VEA), и указывается на необходимость дополнительных исследований поведения экструдированного пенобетона в свежем состоянии.Авторы предполагали возможность применения экструдированных пенобетонных смесей плотностью до 200 кг / м 3 3 . Как конструкционные, так и неструктурные области применения экструдируемых элементов из пенобетона были признаны эффективными и экологически безопасными. Одним из предложенных вариантов применения было формирование многослойных изоляционных панелей на месте.

В общем, бетон, который подходит для цифрового строительства, должен быть хорошо экструдируемым и демонстрировать адекватную строительную способность.Кроме того, напечатанные слои должны иметь хорошие межслойные связи [9,16,20,21]. Наконец, материал должен обладать соответствующими механическими свойствами, например прочностью на сжатие [9,21,22,23]. Обычный пенобетон отличается хорошей обрабатываемостью и текучестью, что является многообещающим с точки зрения технологических параметров экструзии и прокачиваемости, необходимых для 3D-печати. Обычно пенобетон перекачивается к месту укладки и, как правило, не требует уплотнения; пенобетон можно успешно перекачивать на значительные расстояния и высоты [1].Таким образом, с этой точки зрения он подходит для технологий 3D-печати на основе экструзии. Однако необходимо учитывать потенциальное влияние перекачки на характеристики пены, поскольку они могут повлиять на стабильность смеси и привести к изменению ее плотности.

Другой важной особенностью материала для печати является его способность к наращиванию, которая складывается из стабильности формы напечатанных слоев под их собственным весом и способности удерживать следующие слои с минимальной деформацией [20].Другими словами, строительная способность пенобетона может быть описана как сочетание самостойкости и достаточной жесткости с ранним схватыванием. Что касается самоустойчивости, пенобетон обычно воспринимается как сыпучий, самоуплотняющийся материал. Признано, что при более низких плотностях текучесть снижается из-за уменьшения собственного веса и адгезии между твердыми частицами и пузырьками воздуха [24]. Однако предыдущие исследования пенобетона показали, что снижение текучести по сравнению с обычными применениями, такими как заполнение пустот, часто рассматривается как признак низкого качества или несоответствующего состава смеси [4].Имея в виду 3D-печать в качестве технологии нанесения, должно быть возможно получение перекачиваемого и самостабильного пенобетона, но на сегодняшний день этот подход не был тщательно исследован, поэтому необходимы дальнейшие исследования.

В исследованиях, связанных с 3D-печатью с использованием бетона с нормальным весом, быстрое схватывание обычно достигается за счет использования ускоряющих добавок или выбора цементов с более коротким временем схватывания, то есть быстротвердеющих сульфоалюминатных или алюминатных цементов [6,25]. Такими же подходами можно добиться быстрого схватывания пенобетона.Однако, как сообщается в [26], использование ускоряющих схватывание материалов в пенобетоне не всегда дает такой же эффект, как в бетоне с нормальным весом. Более того, они могут вызвать нестабильность и повлиять на качество пенобетона. В некоторых исследованиях использовались различные типы цемента, характеризующиеся быстрым схватыванием [27,28]. Быстротвердеющий портландцемент часто используется для снижения рисков нестабильности и сегрегации, а также для обеспечения того, чтобы пенобетон на очень ранней стадии развил прочную однородную микроструктуру.Также было замечено, что добавление алюминатного цемента, сокращая время схватывания, может снизить прочность пенобетона на сжатие [29]. Кроме того, упомянутые специальные вяжущие материалы относительно дороги, что ограничивает область их применения.

Еще одним важным аспектом печатных элементов является их межслойное склеивание. Он сильно влияет на механические свойства, долговечность и работоспособность 3D-печатных конструкций; см., например, [30,31,32]. Качество межслойной связи зависит от множества факторов, связанных со свойствами свежего бетона и техникой печати, т.е.е., временной интервал между слоями, форма и размер волокна и т. д. Не было найдено литературы, которая могла бы помочь оценить поведение пенобетона с этой точки зрения. Что касается проницаемости пенобетона и его устойчивости к агрессивным средам, было доказано, что его ячеистая пористая структура не обязательно делает его менее устойчивым к проникновению влаги по сравнению с обычным плотным бетоном, поскольку воздушные пустоты не связаны между собой и действуют как буфер, предотвращающий капиллярное всасывание и другие транспортные процессы.

Как правило, существует два механизма введения больших объемов воздушных пустот в смесь: (1) использование газообразующих химикатов, таких как алюминиевый порошок, и (2) использование пенообразователей. Добавление газообразующих агентов приводит к образованию пузырьков в результате химических реакций с щелочными продуктами гидратации, например гидроксидом кальция [33]. Этот метод используется для производства газобетона, который еще называют газобетоном. Как сообщают Холт и Райвио [31], пенобетон, полученный с добавлением алюминиевой пудры, имеет ряд существенных недостатков, таких как относительно высокая стоимость, а также более низкая прочность, более высокое содержание влаги и более выраженная усадка по сравнению с традиционным бетоном.Свойства газобетона можно значительно улучшить путем отверждения паром под высоким давлением в автоклаве. Однако такое отверждение было бы контрпродуктивным, поскольку основным преимуществом технологии 3D-печати бетона является сокращение промежуточных этапов, таких как сложное литье и отверждение.

В альтернативном подходе пенобетон может быть получен либо путем добавления пенообразователя к цементному тесту с последующим интенсивным перемешиванием, которое называется методом смешанного вспенивания, либо путем смешивания отдельно полученной пены с цементным тестом, что, как известно как метод предварительного вспенивания [1,4].В отличие от добавления газообразующих химикатов, использование пенообразователей при производстве пенобетона имеет более высокий потенциал для применения в 3D-печати. В основном это объясняется относительной легкостью корректировки свежих и затвердевших свойств путем варьирования сырья и химических добавок [1,2,7,24,26,34].

Смешанный метод вспенивания широко применяется в строительной индустрии для производства пенобетона. Однако этот метод ограничен использованием синтетических пенообразователей и сильно зависит от используемого смесительного устройства.Напротив, метод предварительного вспенивания позволяет определять плотность материала путем точного добавления необходимого количества пены к основной смеси. Поскольку соотношение пены и основного материала может быть больше 1: 1, пена становится основным фактором влияния [35]. Стабильность воздушных пустот во время перекачивания и перемешивания с цементной матрицей важна для обеспечения требуемых характеристик пенобетона в свежем и затвердевшем состояниях. Для пенобетона с синтетическими пенообразователями легче обращаться, они менее восприимчивы к экстремальным температурам и могут храниться дольше.Синтетические пенообразователи можно использовать как в технологиях предварительного вспенивания, так и в технологиях смешанного вспенивания. Более того, они, как правило, менее дороги и требуют значительно меньше энергии для производства высококачественной пены [35]. Тем не менее, синтетические поверхностно-активные вещества не могут соответствовать характеристикам агентов на основе белков из-за их большего размера пузырьков и менее изолированных ячеек, что приводит к более низкой прочности бетона [35,36]. Пены, полученные с использованием пенообразователей на белковой основе, характеризуются меньшим размером пузырьков воздуха, более высокой стабильностью, т.е.е. меньший дренаж воды и более прочная изолированная пузырьковая структура по сравнению с пенами, полученными с помощью синтетических пенообразователей [1,2]. Также сообщалось, что пенобетон, полученный с использованием поверхностно-активных веществ на белковой основе, имеет отношение прочности к плотности от 50% до 100% выше по сравнению с пенобетоном, полученным с использованием синтетического пенообразователя [35,36].

Основываясь на соображениях, упомянутых в отношении характеристик двух существующих поверхностно-активных веществ, в этом исследовании основное внимание уделяется технологии предварительного вспенивания с использованием пенообразователя на белковой основе.показана структура экспериментальной части представленного исследования. Настоящее исследование посвящено получению пригодного для печати пенобетона, который является стабильным и дает адекватные реологические и механические свойства, подходящие для 3D-печати. Составляющие материалы были выбраны специально для достижения достаточной когезии и стабильности формы сразу после нанесения материала печатающей головкой, а также адекватных долгосрочных механических свойств для структурных применений. Было подготовлено четыре рецепта.Желаемая плотность свежих смесей была указана в пределах 1100–1600 кг / м 3 . Наконец, изоляционные свойства пенобетона для печати сравнивались с изоляционными свойствами обычного бетона для печати (справочный материал описан в [37]).

Обзор экспериментальной программы.

2. Материалы и методы

2.1. Методология проектирования смесей и экспериментальная программа

Схема подхода к проектированию смесей, разработанная в рамках исследовательского проекта CONPrint3D-Ultralight, представлена ​​в.Этот подход также может быть применен к смешанному методу вспенивания. Тогда определение характеристик пены не требуется. Составление смеси пенобетона с использованием метода предварительного вспенивания делится на два этапа, а именно: определение состава матрицы на основе цемента и определение количества пены, которое необходимо добавить для достижения желаемой плотности. В частности, общий подход к дизайну смеси можно разделить на четыре этапа, как показано на. Итеративная оптимизация используется для получения удовлетворительных композиций пенобетона, пригодных для печати.

Подход к составлению смеси для пенобетона, пригодного для печати.

Во-первых, ограничения, такие как диапазон отношения воды к цементу (в / ц) и содержание цемента, должны быть установлены в соответствии с предполагаемым применением. На основании информации из литературы можно определить подходящие пропорции и материалы. Производство и характеристики пены приведены ниже. Целью этого этапа является получение достаточно стабильной пены, способной выдержать процесс перемешивания. Параллельно с этим путем итеративного тестирования определяются водопотребление и вяжущий состав матрицы на основе цемента, включая дозировку суперпластификатора (SP).Обрабатываемость оценивалась путем измерения значений диаметра распределенного потока в соответствии с европейским стандартом DIN EN 1015-3: 1998 и, таким образом, с использованием так называемого конуса Хэгермана и 15 ходов [38]. На первом этапе цель этой процедуры — получить матрицу на основе цемента с минимальным количеством воды, но этого достаточно для пластификации матрицы с рекомендованной дозировкой SP. В то же время матрица на основе цемента должна быть достаточно текучей, чтобы обеспечить хорошее включение пены в смесь.Чрезмерно жесткая матрица на основе цемента приводит к разрушению или разрушению пены, тогда как чрезмерно жидкая матрица расслаивается. В этом исследовании первая оценка добавления воды была сделана в соответствии с процедурой, описанной Окамурой и Одзавой [39]. В результате первого шага получается стабильная пена и соответственно жидкая матрица на основе цемента.

Третий шаг направлен на проверку реологических свойств свежего пенобетона, которые должны соответствовать требованиям процесса 3D-печати, касающимся пригодности для печати, экструдируемости и технологичности [39,40,41,42].Состав связующего можно регулировать для достижения требуемых свойств, включая использование дополнительных химических добавок и дальнейшую оптимизацию пены.

Последний шаг определяет испытания свойств пенобетона в затвердевшем состоянии, таких как его прочность на сжатие и изгиб, теплопроводность и / или долговечность. На этой стадии отношение воды к связующему (вес / вес) может быть уменьшено; в качестве альтернативы может быть введено усиление в виде диспергированных нановолокон или микроволокон [1,3,43].Представленный подход был использован в данном исследовании для разработки пенобетонов с различной плотностью путем изменения их состава и режимов перемешивания. Реологические свойства в свежем состоянии и механические свойства в затвердевшем состоянии — по схеме, приведенной в — были испытаны, и их результаты представлены в разделе 3.

2.2. Определение потребности в воде

Важно указать подходящее содержание воды в пенобетоне. Стандартной процедуры не существует, особенно когда должны быть выполнены требования по пригодности для печати, прокачиваемости и наращиванию.В настоящей работе водопотребление цементной матрицы определялось методом Окамуры и Одзавы [39]. Состав испытанных порошков приведен в.

Таблица 1

Композиции связующего, испытанные в соответствии с процедурой Окамуры.

: 100

Связующее Тип цемента Состав по объему [летучая зола: цемент] Отношение летучей золы к цементу [по массе]
A-0 CEM II 0.00
A-1 CEM II 40:60 0,47

2.3. Сырье

Использовали композитный портландцемент типа II CEM II / A-M (S-LL) 52,5 R (OPTERRA Zement GmbH, Werk Karsdorf, Германия). В качестве вторичного вяжущего материала была выбрана летучая зола каменного угля Steament H-4 (STEAG Power Minerals GmbH, Динслакен, Германия). Химический состав и измеренный гранулометрический состав представлены соответственно в и.Хотя химический состав был взят из таблиц данных поставщиков материалов, распределение частиц по размерам было оценено с помощью лазерной дифракции (LS 13320, Beckman Coulter, Крефельд, Германия). Летучая зола соответствует стандарту DIN EN 450 [44] и может использоваться в качестве добавки к бетону в соответствии с DIN EN 206-1 [45]. Таким образом, он был принят как полученный в данном исследовании и не охарактеризован далее. Второстепенные составляющие показаны, в то время как значения для основных составляющих SiO 2 и Al 2 O 3 не приводятся.Внедрение летучей золы в состав бетона, с одной стороны, позволило снизить водопотребность сухих компонентов при сохранении заданного реологического поведения; с другой стороны, это улучшило устойчивость смесей. SP на основе поликарбоксилатного эфира (PCE) (MasterGlenium SKY 593, BASF Construction Solutions GmbH, Тростберг, Германия) использовали в матрице на основе цемента для регулирования удобоукладываемости при пониженном содержании воды. Содержание воды в СП составляло 77% по массе.Плотность СП составила 1050 кг / м 3 3 . Для производства пены использовали пенообразователь на белковой основе (Oxal PLB6, MC-Bauchemie GmbH & Co. KG, Боттроп, Германия).

Гранулометрический состав твердых компонентов.

Таблица 2

Химический состав цемента и летучей золы (LOI = потери при возгорании, n.d. = не определено).

CO

2.22

Материал Плотность [г / см 3 ] Химический состав [% по массе]
Остаток SiO 2 Al 924 3 O 2 O 3 CaO MgO SO 3 K 2 O Na 2 O LOI LOI CO 9139

CEM II / AM (S-LL) 52.5 R 3,12 0,74 20,63 5,35 2,82 60,94 2,14 3,52 1,05 0,22 1,05 0,22 3,47 3,47 0,22 3,47 nd н.о. н.о. н.о. 3,6 н.о. 0,6 н.о. 2,9 1,8 н.о. <0.01

2.4. Процедура смешивания

На предварительном этапе было приготовлено три литра матричной пасты на основе цемента для оценки потребности в воде с использованием тарельчатого смесителя (Hobart NCM20, The Hobart Manufacturing Company Ltd, Лондон, Великобритания, вместимость 5 л). описывает процедуру смешивания.

Таблица 3

Методика смешивания связующей пасты для определения водопотребности порошков.

Время [мин: с] Скорость [об / мин] Действие
0:00 0 Добавить воду к твердым частицам
0: 00–1: 2500 Перемешивание на низкой скорости
1: 00–1: 30 5000 Перемешивание на высокой скорости
1: 30–3: 00 0 Отдых, в течение этого времени , очистите стены
3: 00–4: 00 5000 Перемешивание на высокой скорости

Пенобетон производился с помощью конического многороторного коллоидного смесителя (KNIELE KKM30, Kniele GmbH, Bad Бухау, Германия).Для каждого эксперимента было приготовлено 30 л пенобетона по методике согласно. После смешивания связующей матрицы пошагово добавляли отдельно полученную пену: 40%; затем еще 40% и, наконец, оставшиеся 20% от общего объема пены.

Таблица 4

Порядок перемешивания пенобетона.

Время [мин: с] Скорость [об / мин] Действие
0:00 0 Добавьте воды к твердым частицам в смесительном баке
0:00 –2: 00 3000 Перемешивание на высокой скорости
2: 00–2: 30 0 Проверьте смесь на однородность
2: 30–4: 30 3000 Смешивание на высокой скорости
4: 30–5: 00 0 Добавление 40% всего объема пены
5: 00–7: 00 1500 Смешивание матрицы и пены вместе на низкой скорости
7: 00–8: 00 0 Добавление еще 40% от всего объема пены
8: 00–10: 00 1500 Смешивание матрицы и пена вместе на низкой скорости
10: 00–11: 00 0 901 26

Добавление оставшихся 20% от общего объема пены
11: 00–13: 00 1500 Смешивание матрицы и пены вместе на медленной скорости

2.5. Процесс 3D-печати

Эксперименты по экструзии и осаждению проводились с использованием двух устройств: (а) автономный винтовой насос (PCP1) DURAPACT DP 326S (DURAPACT Gesellschaft für Faserbetontechnologie mbH, Хаан, Германия) и (б) 3D-бетон. тестовое устройство для печати (3DPTD, устройство для 3D-печати по индивидуальному заказу, разработанное TU Dresden, Дрезден, Германия), оснащенное PCP2; видеть . Использовалась труба диаметром 25 мм, а выход из сопла устанавливался вручную для нанесения бетонных слоев.В b выходное отверстие сопла расположено автономно с помощью предварительно запрограммированного сценария Lua, который является языком программирования. При использовании PCP1 скорость откачки была установлена ​​на уровне 10 л / мин, а выходное отверстие сопла имело круглое поперечное сечение диаметром 20 мм. Эксперименты по печати с использованием специально разработанного 3DPTD были выполнены с двумя различными прямоугольными геометрическими формами сопла: 10 мм на 50 мм и 20 мм на 30 мм, чтобы исследовать влияние этого параметра на печатные характеристики пенобетона. Скорость печати 40 мм / с была выбрана на основании предварительных исследований экструдируемости.Были изготовлены образцы с прямыми стенками длиной 700 мм с интервалом времени послойного напыления 30 с. Чтобы оценить способность к наращиванию состава смеси, было нанесено максимальное количество слоев, один поверх другого, до тех пор, пока не произошло саморазрушение. Кроме того, стены, состоящие всего из трех слоев, были напечатаны и в конечном итоге использовались при подготовке образцов для механических испытаний.

( a ) Автономный винтовой насос (PCP), DUROPACT DP 326S и ( b ) устройство для тестирования 3D-печати бетона (3DPTD).

2.6. Подготовка образца

Каждая напечатанная стена была перенесена в климатическую камеру в возрасте 24 часов и отверждена при постоянной температуре 20 ° C, относительной влажности 65% и при отсутствии ветра в течение 27 дней. Эта процедура специально не соответствует стандарту DIN EN 12390-2 [46], который предписывает совсем другие условия отверждения, а именно влажное отверждение. Поскольку в 3D-печати бетона не используется опалубка, а практические варианты отверждения очень ограничены из-за особенностей процесса печати, авторы решили использовать стандартный лабораторный климат на протяжении всей экспериментальной программы, включая подготовку бетона, 3D-печать, отверждение и т. Д. и тестирование.Такие климатические условия лучше всего представляют перспективную экспозицию крупногабаритных печатных элементов конструкций в практике строительства. В возрасте шести дней стены распилили, чтобы изготовить образцы для механических испытаний. Пиление происходило без добавления воды, чтобы избежать впитывания; затем образцы были возвращены в климатическую камеру. Кубики с длиной кромки 40 мм были подготовлены для испытаний на прочность на сжатие, тогда как размеры образцов для испытаний на изгиб варьировались в диапазоне от 30 до 33 мм в ширину и от 50 до 56 мм в высоту, что соответствует размеру трех отпечатанных слои.Неровные боковые поверхности слоев не полировались. Длина балочных образцов 160 мм. Погрузочная площадка была равномерно закалена быстротвердеющим гипсом.

2.7. Механические испытания

показывает установки для испытаний на изгиб и сжатие. Испытания на изгиб проводились под контролем поперечного смещения со скоростью смещения 0,5 мм / мин. Для измерения прочности на сжатие загрузочные плиты испытательной установки были 40 мм на 40 мм в соответствии с поперечным сечением кубов.Для каждого материала было испытано не менее трех образцов.

Измерение механических свойств напечатанных образцов: ( a ) испытание на трехточечный изгиб (Zwick 1445, ZwickRoell GmbH & Co. KG, Ульм, Германия), ( b ) испытание на одноосное сжатие (EU20, VEB Werkstoffprüfmaschinen, Лейпциг, Германия).

2,8. Измерения теплопроводности

Образцы размером 70 × 70 × 20 мм 3 были вырезаны из стен, напечатанных таким же образом, как и для механических испытаний.Изоляционные свойства оптимального состава смеси были измерены с помощью анализатора теплопередачи ISOMET 2104 (Applied Precision Ltd, Братислава, Словакия). В этом приборе применяется метод динамического измерения, который позволяет сократить период измерения теплопроводности до 10–16 минут.

2.9. Сканирующая электронная микроскопия и световая микроскопия

Сканирующая электронная микроскопия (SEM) использовалась для визуализации микроструктуры пенобетона. Установка для сканирующего электронного микроскопа Quanta 250 FEG (Thermo Fisher Scientific, Уолтем, Массачусетс, США) работала в так называемом «режиме низкого вакуума», при котором непроводящие образцы отображались в том виде, в котором они были получены без напыления.

Пористая структура пенобетона состоит из пор геля, капиллярных пор, а также захваченных и захваченных воздушных пустот [3]. Гелевые и капиллярные поры не оценивались, потому что эти свойства матрицы на основе цемента не считались существенными в данном исследовании. Между тем, оценивались только захваченные и захваченные воздушные пустоты диаметром более 0,01 мм. Размеры воздушных пустот в пенобетоне изучали с помощью цифрового микроскопа VHX 6000 (Keyence Deutschland GmbH, Ной-Изенбург, Германия) с инструментом анализа изображений высокого разрешения.Метод SEM не позволяет захватить большую площадь, а требует длительных последовательностей изображений и сшивания изображений. Напротив, цифровой световой микроскоп позволил гораздо проще генерировать обзорные изображения богатой порами микроструктуры с наиболее подходящей степенью разрешения. Образцы измерений теплопроводности использовались в дальнейшем для измерения пористости. Их обрабатывали в три этапа: (1) шлифовка наблюдаемой поверхности наждачной бумагой разной степени тяжести, (2) окрашивание выглаженной поверхности черным фломастером и 3) заполнение протянутых пор порошком контрастного цвета ( белый BaSO 4 ).Эта часть подготовки образца соответствует стандарту DIN EN 480-11: 2005 [47]. Для оценки рассматривалась площадь 1905,0 мм². После того, как поры были заполнены и контраст между порами и остальной поверхностью был заархивирован, было создано двоичное изображение, состоящее из двух (случайных) цветов. показывает типичную последовательность обработки изображений.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *