Генераторы электрической энергии: Что такое Генератор и как он устроен

Содержание

Что такое Генератор и как он устроен


Как генератор создает электроэнергию?

Генераторы являются полезными устройствами, которые снабжают электрической энергией во время прекращения подачи электроэнергии и предотвращают нарушение обычной деятельности человека, которая случается из-за отсутствия электроэнергии. Генераторы имеют различные электрические и физические конфигурации для использования, которое вам необходимо. Дальше мы рассмотрим, как именно функционирует генератор, его основные компоненты, и как электрогенератор действует в роли вторичного источника электричества, в случае его использование в жилых домах или на промышленных предприятиях.

Как работает генератор?

Электрический генератор – это устройство, которое конвертирует механическую энергию, полученную из внешнего источника, в электрическую энергию. Важно понимать, что в целом генератор не «создает» электрическую энергию. Вместо этого, он использует механическую энергию, которая снабжается им, для усиления движения электрических зарядов, находящихся в проводе его обмотки через внешнюю электрическую цепь (кольцо циркуляции). Этот поток электрических зарядов составляет электрический выходной ток, поступающий от генератора. Этот механизм можно понять, проведя аналогию электростанции с водяной помпой, которая вызывает своими действиями поток воды, но в действительности не «создает» его.
Современный электрогенератор работает по принципу электромагнитной индукции, обнаруженной Майклом Фарадеем в 1831-1832 годах. Фарадей открыл, что поток электрических зарядов может быть вызван перемещением электрического проводника, таким как например провод, который содержит электрические заряды, в магнитном поле. Такое передвижение создает разность напряжений между двумя концами провода или электрического проводника, который в свою очередь вызывает электрические заряды в поток, таким образом генерируя электрический ток.

Основные компоненты электростанции

Можно провести такую классификацию основных компонентов электрогенератора:
(1) Двигатель 
(2) Синхронный генератор (или генератор переменного тока)
(3) Система подачи топлива
(4) Регулятор напряжения
(5) Система выпуска и охлаждения двигателя
(6) Система смазки
(7) Зарядное устройство
(8) Панель управления
(9) Основная сборка / Конструкция

(1) Двигатель электростанции

Двигатель является источником подачи механической энергии миниэлектростанции. Размер двигателя прямо пропорционален максимальной мощности, которую генератор может производить. Есть несколько факторов, которые нужно обязательно знать при оценке двигателя вашего генератора.

(а) вид используемого топлива – двигатели электростанции работают на различном топливе, таких как дизельное топливо, бензин, пропан или природный газ. Чаще всего маленькие генераторы для дома работают на бензине, тогда как большие промышленные Электростанции на дизельном топливе, жидком пропане, природном газе или пропановом газе. Определенные двигатели также могут работать на двух видах топлива таких как дизельное топливо и газ.

(b) двигатели с верхним расположением клапанов OHV – такие двигатели отличаются от других тем что, впускные и выпускные клапаны у них расположены в верхушке (головке) цилиндра двигателя, а не на блоке цилиндров. Двигатели с верхним расположением клапанов более дорогие, но имеют некоторые преимущества перед другими двигателями:

— компактный дизайн 
— более простой механизм работы 
— долговечность
— удобный для пользования в работе 
— низкий уровень шума во время работы 
— низкий уровень выбросов 

(с) чугунная гильза в цилиндре двигателя – это своего рода подкладка в цилиндре двигателя. Она сокращает изнашивание и обеспечивает долговечность двигателя. Большинство двигателей с верхним расположением клапанов оснащены такой гильзой в цилиндре, но все равно необходимо проверять это в двигателе. Чугунная гильза не дорога, но играет очень важную роль в долговечности двигателя, особенно если вам необходимо часто использовать генератор.

(2) Синхронный генератор 

Синхронный генератор (или генератор переменного тока) является частью электростанции, который вырабатывает электрическую мощность от механической, подаваемой двигателем. Он содержит в себе неподвижные и подвижные детали, монтированные в корпус. Компоненты работают вместе, вызывая тем самым относительное движение между магнитными и электрическими полями, что в свою очередь вырабатывает электроэнергию.

(а) Ротор – это подвижная деталь, которая создает вращающееся магнитное поле одним из таких трех способов: 

(i) индукцией – известен как синхронный бесщеточный генератор и обычно используется в больших генераторах.
(ii) Постоянными магнитами – зачастую используется в маленьких генераторах 
(iii) С помощью задающего генератора (возбудителя) – задающий генератор является маленьким источником постоянного тока, который активизирует ротор через сборку токопроводящих контактных колец и щеток.

Ротор вырабатывает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмоткой статора. Это создает переменный ток на выходе генератора. 

Вот следующие факторы, которые нужно знать при оценке синхронного генератора

(а) металлический или пластиковый корпус – металлический дизайн обеспечит долговечность генератора. Пластиковый корпус деформируется со временем из-за чего его движущиеся части могут подпадать под негативное воздействие внешних факторов. Это может вызвать изнашивание и что еще важно опасность для пользователя. 
(b) шариковый или игольчатый подшипник – предпочтение отдается шариковым подшипникам, тем более что они будут дольше вам служить. 
(c) бесщеточный генератор – синхронный генератор, который не использует щетки, требует меньшего технического обслуживания и также производит более чистую энергию. 

(3) Система подачи топлива 

Топливный бак обычно имеет достаточную способность поддерживать электрогенератор в рабочем состоянии от 6 до 8 часов в среднем. В случае если минигенератор, топливный бак крепится на верхней части корпуса электростанции. Для промышленного применения необходимо устанавливать наружный топливный бак. 

Представляем вам следующие характеристики системы подачи топлива:

(а) соединение трубопроводов от топливного бака к двигателю – линия питания направляет топливо от бака к двигателю и обратный провод направляет топливо от двигателя к баку.
(b) вентиляционная труба для топливного бака – топливный бак имеет вентиляционную трубу для предотвращения повышения давления во время повторного заполнения или слива топливного бака. Когда вы заполняете бак, обеспечьте контакт металлических поверхностей между соплом наполнителя и топливным баком для избежания искр. 
(с) сливное соединение от топливного бака к дренажной трубе – это необходимо для того, чтобы при любом сливе во время повторного заполнения бака не случилась утечка жидкости на генераторной установке. 
(d) топливный насос – он перемещает топливо от основного бака-хранилища до бака периодического действия (временного бака). Топливный насос как правило имеет электропривод.
(е) топливный водный разделитель / топливный фильтр – он отделяет воду и неизвестные вещества с топливной жидкости для защиты других компонентов генератора от коррозии и загрязнения. 
(f) топливный инжектор – он автоматизирует топливную жидкость и распыляет необходимое количество топлива в камеру сгорания двигателя. 

(4) Регулятор напряжения AVR

Эта составляющая регулирует выходное напряжение генератора. Далее будет описаны компоненты регулятора напряжения, которые занимают неотъемлемую часть в его работе.

(1) Регулятор напряжения: изменение переменного напряжения в постоянный ток – регулятор напряжения берет на себя малую часть выходного переменного напряжения и конвертирует его в постоянный ток. Регулятор напряжения затем подает постоянный ток на вторичную обмотку в статоре, известному как возбудитель обмотки (или обмотка задающего генератора).

(2) Возбудитель обмотки: изменение постоянного тока в переменный – возбудитель обмотки функционирует так же, как и основная обмотка статора и генерирует небольшое количество переменного тока. Возбудитель обмотки связан с таким понятием как вращающийся выпрямитель тока.

(3) Вращающийся выпрямитель тока: изменение переменного тока в постоянный – он выпрямляет переменный ток, который генерируется возбудителем обмотки, и конвертирует его в постоянный ток. Этот постоянный ток в свою очередь подается на ротор для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора.

(4) Ротор: изменение постоянного тока в переменное напряжение – ротор индуцирует большое количество переменного напряжения через обмотку статора, которую генератор производит как большое количество выходного переменного напряжения.

Этот цикл происходит до тех пор, пока генератор начинает вырабатывать выходное напряжение, соответствующее его полной работоспособности. Когда производительность (или выходная мощность) генератора увеличивается, регулятор напряжения вырабатывает меньше постоянного тока. Если генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает достаточно постоянного тока для поддержания выходной мощности генератора на полном рабочем уровне.

При добавлении нагрузки на электростанцию, его выходное напряжение немного уменьшается. Это побуждает регулятор напряжения начать действовать. Цикл продолжается до тех пор, пока выходная мощность генератора не увеличиться до ее первоначальной работоспособности.

(5) Система выхлопа и охлаждения двигателя электростанции

(а) Система охлаждения электрогенератора

Продолжительное использование миниэлектростанции приводит к тому, что различные его компоненты нагреваются. Поэтому в таком случае необходимо иметь охлаждающую и вентиляционную систему для прекращения нагрева. Вода иногда используется как охлаждающая жидкость для генераторов, но это ограничивается определенными ситуациями, например, когда у вас маленький генератор для дачи или городских условий или очень большой генератор около 2250 кВт и т.д.

Водород иногда может использоваться как охладитель для обмотки статора в больших электростанциях, так как он более эффективно поглощает тепло. Водород убирает тепло от генератора и переносит его через теплообменник во вторичный контур охлаждения, который имеет деминирализованную воду как охлаждающая жидкость. Вот почему рядом с большими генераторами и маленькими электростанциями всегда находится большая охлаждающая башня (или стояк). Для всех других использований, как на предприятии, так и в жилых условиях, стандартный радиатор и вентилятор устанавливаются на генератор и работают в основном как охлаждающая система. Очень важно проверять уровень охлаждения генератора каждый день. Охлаждающая система и помпа с неочищенной водой должны промываться каждые 600 часов и теплообменник также должен очищаться каждые 2400 часов работы мини генератора. Генератор должен быть помещен в открытую и проветриваемую область. По национальным правилам установки оборудования устанавливается, что минимальное расстояние по сторонам генератора должно быть равно 3 футам для обеспечения свободного потока свежего воздуха.

(b) Система выхлопа

 Отработаный газ, выпущенный генератором, содержит в себе высокотоксичные химикаты, с которые нужно надлежащим образом отвести. Поэтому необходимо установить соответствующую вытяжную систему для ликвидации отработаных газов. Иногда люди даже и не думают об этом, хотя отравление угарным газом остается одним из самых распространенных случаев смертей. Вытяжные трубы чаще всего изготавливаются из чугуна, кованого железа или стали. Они должны быть автономными и не должны поддерживаться двигателем генератора. Чаще всего выхлопные трубы прикрепляются к двигателю с использованием гибких соединителей для минимизации вибраций и предотвращения разрушения вытяжной системы генератора. Вытяжные трубы заканчиваются на открытом воздухе и ведут от дверей, окон и других открывающихся приспособлений, к дому или другому строению. Вы должны быть уверены, что вытяжная система вашего генератора не соединена с другим оборудованием.

(6) Система смазки

Так как генератор состоит из движущихся частей в его двигателе, необходимо смазывание для обеспечения длительности срока службы и плавной обработки на долгое время. Двигатель мини-электростанции смазывается маслом, которое находится в помпе. Необходимо проверять уровень смазывающего масла каждые 8 часов работы генератора. Кроме этого в проверке нуждается любая утечка масла и его изменения каждые 500 часов работы бензогенератора.

(7) Зарядное устройство

Запуск генератора изначально производится от аккумулятора. Зарядное устройство сохраняет батарею генератора заряженной, снабжая ее точным «плавающим» напряжением. Если такое напряжение очень низкое, батарея останется незаряженной. Если напряжение очень высокое, оно сократит срок работы батареи. Зарядные устройства обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Также такие устройства полностью автоматизированы и не требуют каких-либо корректировок или изменений в параметрах. Постоянное выходное напряжение зарядного устройства устанавливается на 2.33 Вольт на ячейку, что является точным напряжением для свинцово-кислотной батареи. Зарядное устройство имеет отдельное постоянное напряжение, что препятствует нормальному функционированию электрогенератора.

(8) Панель управления электростанцией

Это пользовательский интерфейс портативной электростанции и он содержит положения об элементах управления. Разные производители предлагают разные панели управления для генераторов. Описание некоторых из них рассмотрим подробней.

(а) электрическое включение и выключение – такие панели управления автоматически включают ваш генератор во время прекращения подачи электроэнергии, следят за электростанцией во время ее работы и автоматически выключают ее, когда она больше не нужена.

(b) механическое устройство прибора (датчик) – различные приборы указывают на важные параметры, таки как давление масла, температура охлаждения, напряжение батареи, скорость вращения двигателя и длительность работы. Непрерывный контроль таких параметров позволяет автоматически выключить генератор, если один из них превысит свои показатели.

(с) датчики мини генератора – панель управления также имеет датчики для измерения выходного тока и напряжения и рабочей частоты.

(d) другие виды контроля – фазовый селекторный переключатель, переключатель частоты, и переключатель управления двигателем (ручной режим или авто режим) и др.

(9) Рама / Корпус

Все генераторы, переносные или стационарные, имеют установленную под заказ раму или корпус, который обеспечивает основную поддержку.

Использование генераторов для промышленного и бытового применения


Хотя основной принцип работы генерирования электроэнергии остается практически одинаковым для всех генераторов, механизм включения питания устройства при использовании электрической мощности, отличается в разных системах.

Переносной генератор


Такие генераторы обычно используются для бытовых целей, когда нужно подключить несколько домашних приборов во время отключения подачи электроэнергии или на строительных площадках, где отсутствует источник электрической энергии и необходимо подключить различные строительные приборы. В таких случаях обычно необходима мощность электрогенератор по крайней мере 4 кВт.

Использование удлинителя:

Одним из наиболее экономичных путей является обеспечение электроснабжения во время отсутствия подачи электроэнергии через использование удлинителя для прямого соединения переносного генератора с теми устройствами, которые вы хотите подключить.

Использование сетевого переключателя:

Безопасным путем при использовании переносного генератора для дома является использование сетевого переключателя мощности, который установлен и соединен с основной электрической сетью вашего дома. Такой выключатель способен переключаться от основного источника питания, зачастую это городская электросеть, к вторичному или даже третичному источнику питания, такому как генератор, когда питание от основного источника прерывается. Ручные переключатели работают через непосредственное управление или через использование удаленного пульта управления. Во время отсутствия электроэнергии переключатель перекидывает питание от второстепенных источников питания и подключает ее к генератору.

В таких случаях мини-генератор может быть присоединен к панели через удлинитель. Электрическая мощность от генератора может подаваться через основной автоматический выключатель и использоваться для необходимых областей. Критические и некритические электроприборы могут быть сгруппированы индивидуально таким образом, что переносный минигенератор будет обслуживать только необходимые приборы. Изолируя линию питания от питания генератора, вы также устраняете риск «обратной связи». Такой является поток электрической мощности от миниэлектростанции в линию питания, что может быть фатальным для электриков, работающих над линией питания во время отсутствия электроэнергии.

Резервный генератор

Переносные генераторы не практичны, так как они могут обслуживать только несколько приборов. Аварийная резервная система может использоваться для поставки мощности на весь дом, а не только на отдельные приборы, и может даже сохранять рабочими кондиционеры во время отсутствия электроэнергии. Также вы можете выбрать меньшие резервные блоки для обеспечения работы только некоторых приборов, таких как холодильник, свет и вентиляторы. Обычно такие устройства колеблются в потреблении от 6 кВт до 40 кВт.

Использование автоматического ввода резерва:
Резервные генераторы обычно устанавливаются вне дома и подсоединяются к основной электрической сети через автоматический переключатель. Система автоматически возобновляет питание в доме в пределах 20 секунд после отключения такого питания без какого-либо ручного вмешательства.

Коммерческий резервный генератор / Промышленные электростанции

Промышленные генераторы используются на коммерческих предприятиях, таких как офисы, производственные фабрики, добыча полезных ископаемых, больницы и др., которые просто не могут позволить себе риск нарушения непрерывности работы во время отсутствия электроэнергии. Зачастую промышленные электростанции – это стационарная установка, которая производит от 50 до 200 кВт мощности. Большинство маленьких и бытовых генераторов являются однофазными (120 Вольт), но коммерческие генераторы практически всегда трехфазные (120, 240 или 480 Вольт).

Использование автоматического ввода резерва:

Также как и бытовые резервные мини генераторы, коммерческие резервные электростанции подключены к электрической сети здания через автоматический переключатель и активизируются автоматически во время отсутствия электроэнергии. Они специально сконструированы так, что переключение между первичным и вторичным источником питания занимает долю секунды и позволяет без замедлений обеспечивать необходимые устройства электроэнергией.


Google

бензиновые, дизельные. Электрогенераторы для дачи и дома. Цены и отзывы.

Цена (руб)

от до

Производитель

  • A-iPower
  • ALTECO
  • Aurora
  • Briggs&Stratton
  • Brima
  • CARVER
  • Champion
  • Daewoo
  • DDE
  • Denzel
  • Elitech
  • Eurolux
  • EuroPower
  • FIRMAN
  • FUBAG
  • Gigant
  • GMGen Power Systems
  • Greengear
  • HONDA
  • Husqvarna
  • Huter
  • Hyundai
  • Inforce
  • K&S BASIC
  • KOHLER-SDMO
  • Kolner
  • Konner&Sohnen
  • LIFAN
  • Loncin
  • Master Yard
  • MaxCut
  • PATRIOT
  • Pramac
  • REDVERG
  • STEHER
  • SUMITACHI
  • TOR
  • VARTEG
  • Wacker Neuson
  • Yamaha
  • Zongshen
  • БИЗОН
  • Витязь
  • ЗУБР
  • Калибр
  • Кратон
  • Победа
  • Ресанта
  • СИБРТЕХ
  • СКАТ
  • Спец
  • ТСС

Max мощность

от до кВт

Мощность номинальная при 220 В

от до кВт

Вид топлива

  • бензин
  • бензин/газ
  • газ
  • дизельное

Автозапуск (АВР)

  • в комплекте
  • нет
  • опция

Датчик масла

Напряжение

  • 24
  • 220
  • 220/380
  • 230
  • 380

Стартер

  • реверсивный старт
  • ручной стартер
  • ручной стартер/электростартер
  • электростартер

Колеса и ручки

Мощность номинальная при 380 В

от до кВт

Силовой разъём CEE 380V/32A

Счетчик моточасов

Индикатор уровня топлива

Тип двигателя

  • 2-х тактный
  • 4-х тактный
  • дизельный

Выход 12V

Дисплей

Тип кожуха

  • закрытый
  • открытый

Евро разъём Schuko 230V/16А

Силовой разъём CEE 230V/16A

Обмотка альтернатора двигателя

  • алюминий
  • медь

Контроль напряжения

  • AVR
  • инверторный
  • компаундный (традиционный)

Силовой разъём CEE 230V/32A

Вес нетто

от до кг

Аккумулятор в комплекте

  • да
  • нет
  • опция

Тип электростанции

  • инверторные
  • мобильные
  • сварочные
  • стационарные
  • туристические

Альтернатор

  • асинхронный
  • синхронный

Силовой разъём CEE 380V/16A

Производитель двигателя

  • A-iPower
  • ALTECO
  • B&S
  • Champion
  • Cummins
  • DDE
  • DENZEL
  • Daewoo
  • Daihatsu
  • Elitech
  • FIRMAN
  • FUBAG
  • Foxweld
  • Generac
  • Gesht
  • Hatz
  • Honda
  • Huanyang Electric
  • Husqvarna
  • Huter
  • Hyundai
  • John Deere
  • KME
  • KOHLER
  • KRONWERK
  • Kema
  • Kinger
  • Kipor
  • Konner&Sohnen
  • Kubota
  • Lester
  • Lifan
  • Lingben
  • Lombardini
  • Loncin
  • Lutian
  • MTU-DDC
  • Magnetta
  • MasterYard
  • Mitsubishi
  • Mitsudiesel
  • Mosa
  • Olymp
  • PATRIOT
  • Perkins
  • PowerMate
  • Pramac
  • REXPO
  • Ricardo (Weifang)
  • Robin-Subaru
  • Ruggerini
  • STEM Techno
  • Sdmo
  • Subaru
  • TSS
  • Tiger
  • Tsunami
  • Union
  • Unitedpower
  • VM Sun
  • Volvo-Penta
  • WENXIN
  • Weifang
  • Xingyue
  • Yamaha
  • Yangdong
  • Yanmar
  • Zongshen
  • kohler
  • ЗУБР
  • ИСТОК
  • Калибр
  • Кратон
  • ПОБЕДА

Евро разъём Schuko 230V/10А

Контейнерный

Подобрано товаров:

Сбросить Показать

Электрический генератор — это.

.. Что такое Электрический генератор?

Основная статья: Электрогенераторы и электродвигатели

Электрогенераторы в начале XX века

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История

Русский ученый Э.Х.Ленц еще в 1833 г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867 гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867 гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г. А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Динамо-машина Йедлика

В 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1852 и 1854) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея

Диск Фарадея

В 1832 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределенных по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина

Основная статья Динамо-машина

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Pixii Ипполит Пикси в 1832.

Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создает постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создается одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока на сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Другие электрические генераторы, использующие вращение

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

МГД генератор

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.

Классификация

Электромеханические индукционные генераторы

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

 — устанавливает связь между ЭДС и скоростью изменения магнитного потока пронизывающего обмотку генератора.

Классификация электромеханических генераторов

  • По типу первичного двигателя:
  • По виду выходного электрического тока
      • Трёхфазный генератор
        • С включением обмоток звездой
        • С включением обмоток треугольником
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

См. также

Ссылки

Виды электромеханических генераторов


Электричество исправно спасает нас от погружения во тьму и питает наши приборы. Можно, не задумываясь, заявить, что без него жилось бы очень несладко. Тем не менее, электростанции, которым вверено бесперебойное снабжение домов электричеством, не всегда справляются со своей задачей. Для того чтобы подача электроэнергии не прекращалась, а также для обеспечения ею мест, где не распространяются электросети, используется специальное оборудование – электрогенераторы.


За свою почти двухвековую историю генераторы успели претерпеть множество изменений, и сегодня можно приобрести модели самых разных модификаций, самая распространённая из которых называется электромеханическим генератором. Как понятно из названия, это устройство, преобразующее механическую энергию в электрическую. В качестве источника механической энергии выступает вращающийся вал, приводимый в движение различными способами. В зависимости от характеристик, классификация электромеханических генераторов выглядит следующим образом:


1.    По типу первичного двигателя. Главным элементом любого электромеханического генератора является двигатель, для работы которого используется различное топливо.

— Турбогенератор. В качестве источника механической энергии в таком генераторе используется паровая турбина. Такие генераторы, как правило, обладают высокой мощностью и используются только на электростанциях.

— Гидрогенератор. Двигателем такого агрегата является гидравлическая турбина. Конечно, установка такого устройства возможна лишь в месте большого скопления воды.

— Дизельный генератор. В таком генераторе установлен двигатель внутреннего сгорания, использующий дизельное топливо. Это наиболее универсальный агрегат, способный развивать как небольшую мощность для бытового использования, так и тысячи киловатт для промышленного  применения.

— Бензиновый генератор. Не такой эффективный, как дизельный, но использующий тот же принцип, агрегат. В качестве топлива используется бензин.

— Газотурбинный генератор. Ещё одно мощное устройство, использующее энергию газовой турбины. Применяется только в промышленных целях.

— Ветрогенератор. В электричество преобразуется кинетическая энергия ветра. Такой генератор получил широкое распространение в Европе, где большинство холмов могут похвастаться ветровой электорстанцией.

— Генератор на альтернативном топливе. Такие генераторы выпускаются редко, а в качестве топлива в них могут использоваться дрова, спирт, пластмасса и другие необычные вещества. В основном используется для военных нужд.


2.    По виду выходного тока.

— Генератор постоянного тока. Первые генераторы были именно такими, но за счёт большей эффективности их вытеснили генераторы переменного тока.

— Генератор переменного тока – однофазный или трёхфазный, с включением обмоток звездой или треугольником.


3.    По способу возбуждения.

— С возбуждением постоянными магнитами.

— С внешним возбуждением.

— С самовозбуждением.

Генераторы тока: переменного и постоянного


Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности — всему нужна электроэнергия. Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация. Поэтому резервная электростанция на базе генератора постоянного или переменного тока  — важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.

Что такое генератор тока


Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков. Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель — именно так работает генератор тока.

В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин — генераторы постоянного или переменного тока.

В чем разница между постоянным и переменным током


Вспоминаем уроки физики. Электроток — заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).

Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке — переменный, в батарейке — постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт — всё постоянный, всё что от 100 до 500 Вольт — переменный.

Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач.

В чем конструктивная разница между генераторами


Несмотря на то, что конечный результат работы электростанций один — потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.

Особенности конструкции генераторов переменного тока

Электростанция такого типа состоит из:

  • Внешней силовой рамы, изготовленной из высокопрочных сплавов. Корпус рассчитан на интенсивную нагрузку, возникающую при передаче магнитного потока от полюса к полюсу. Проще говоря: чугунный кожух не «пробивается» разрядами тока.
  • Магнитных полюсов, закрепленные на корпусе болтами или шпильками. На «плюс» и «минус» монтируется обмотка.
  • Статора. Остов с катушкой возбуждения изготавливают из ферромагнитных материалов, на сердечнике устанавливают магнитные полюса, которые и образуют магнитное поле.
  • Вращающегося ротора (якоря). Задача магнитопровода — снизить вихревые токи и повысить КПД генератора постоянного тока.
  • Коммутационного узла, оснащенного щетками (обычно изготовленными из графита) и коллекторными пластинами из меди.


Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.

Особенности конструкции генератора переменного тока


Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.



Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.

Асинхронным машинам характерны:

  • Отсутствие электрической связи с ротором;
  • Вращение якоря под воздействием остаточного механизма статора;
  • Измененная электрическая нагрузка на статоре.


Такие агрегаты могут быть однофазными и трехфазными.

Принцип работы генератора постоянного тока

Простейший  по конструкции генератор работает следующим образом:

  • Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
  • Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
  • Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
  • С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.


Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.


К преимуществам генераторов постоянного тока относят:

  • Небольшой вес и компактность агрегата;
  • Возможность использовать в экстремальных условиях;
  • Отсутствие потерь, связанных с вихревыми токами.


Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.

Принцип работы генератора переменного тока


Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.

Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.

Основные достоинства генераторов переменного тока


В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.

Плюсами использования генераторов переменного тока являются:

  • Большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
  • Выработка электроэнергии на низких скоростях вращения ротора;
  • Проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
  • Конструкция токосъемного узла отличается большей надежностью;
  • Больше эксплуатационный ресурс и меньше эксплуатационные затраты.


Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.

Где применяются генераторы постоянного и переменного тока


Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии. Например, на борту самолетов. Если большая мощность — не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники. 


Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети — это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования. 


Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока. Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств. С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.

Где применяются дизельные генераторы? — ГЕНМОТОРС


Компьютеры, Интернет, TV, мобильные телефоны — все эти великолепные изобретения техники просто ничто, если нет электрической энергии. Человечество привыкло к этому, и о важности электричества многие задумывается лишь тогда, когда возникают проблемы с электроснабжением. Отключение электроэнергии априори ставит под сомнения полезность всех других достижений техники. К счастью, величайшие умы человечества изобрели такой полезный агрегат, как дизельный генератор, который решают проблему энергозависимости, теперь электрическая энергия есть там, где нет цивилизации и других источников электрообеспечения.

Купить генератор или использовать услугу аренда дизельных электростанций можно на нашем сайте. В ассортименте имеется множество качественных моделей следующих известных производителей дизель генераторов: AKSA, Cummins, FG Wilson, Grupel, PowerLink, Caterpillar, Iveco Motors, SDMO, и т.д…


Дизельный генератор — это специальное энергетическое устройство, которое состоит из дизельного двигателя и как минимум одного генератора. Дизельный генератор функционирует на дизельном топливе и генерирует электрическую энергию для электрообеспечения различных объектов. В последнее время электростанции пользуются огромным спросом и заслужили признание миллионов. Применяют его как основной или резервный источник питания, используют их простые люди, живущие в частных домах, и владельцы всяческих предприятий.


Где применяются дизельные электростанции в качестве основного источника


Как правило, использование дизель генератора как основного источника электропитания или обусловлено полным отсутствием централизованных сетей — удаленные загородные дома, геологоразведочные экспедиции, фермы, вахтовые поселки, или обусловлено высоким уровнем расходов для проведения централизованной электросети — использования дизельных генераторов в поливном земледелии для привода погружных насосов и т. п. Во втором случае намного экономнее купить генератор, так как затраты на покупку и эксплуатацию дизельной электростанции будут существенно меньше, нежели проведение линии электросети.


Одной из главных причин сегодняшней актуальности альтернативного энергоснабжения является недоступность централизованно подаваемой электроэнергии. Другая причина популярности дизельных электростанций — постоянные перебои в подаче электрической энергии и частая аварийность. Для отдаленных от цивилизации дачных поселков, коттеджных домов, строительных площадок, ферм и небольших предприятий часто единственным решением вопроса с электрообеспечением является автономное электроснабжение — покупка или аренда дизельной электростанции с генератором определенной мощности. Благодаря таким качествам, как долговечность, большой моторесурс, быстрая окупаемость, надежность и экономичность, на многих объектах дизель генераторы — просто незаменимый автономный источник электроэнергии.

Где применяются дизельные генераторы в качестве резервного источника


Есть множество случаев, когда объект уже питается от промышленной сети, но постоянные перебои и отключения электрической энергии создают целый ряд проблем. Для того что обезопасить себя от нежелательных последствий исчезновения или некачественных характеристик электроэнергии можно купить генератор или взять в аренду дизельные электростанции для резервного электропитания. Обычно, как резервный источник дизельные генераторы используются в офисах, на промышленных предприятиях, в банках, школьных, дошкольных и медицинских учреждениях, на складах, в торговых организациях и т. д.


Применение дизельной электростанции в качестве резервного источника питания позволяет избежать отключения и повреждения важной дорогостоящей аппаратуры, сберечь материальные ценности, продолжить функционирование различных учреждений в нормальном режиме. История помнит множество ярких примеров, когда перебои в подаче электроэнергии ставали причиной неприятных последствий. Например, на Западе США в 2003 году, когда был нанесен огромный ущерб из-за ограблений, краж и порчи продуктов питания в период сбоев в подаче электрической энергии.


Вы спросите, а почему покупка и аренда дизельных генераторов пользуются таким небывалым спросом в современном мире?


  • Во-первых, дизель генераторы — это полная автономность от городской энергосети. Купить генератор — это, значит, обрести энергетическую независимость. Проще говоря, дизель генераторы способны работать вне зависимости от окружающей сети и погодных условий круглые сутки.


  • Во-вторых, это экономическая выгода. Дизельные электростанции просто на голову превосходят бензиновые генераторы по экономии топлива. И, кроме того, дизельное топливо априори дешевле бензинового.


  • В-третьих, функциональность в применении дизель генераторов. Это оборудование довольно-таки легко использовать, получая максимальный результат и полную энергетическую независимость. Разумеется, установить дизельную электростанцию намного проще чем, к примеру, вести отдельную линию к объекту.


  • В-четвертых, пожаро- и взрывобезопасность. Современные двигатели, которые являются основой дизельных электростанций, отвечают всем нормам пожаробезопасности, что говорит о надёжности использования дизельных установок.


И это еще далеко не все преимущества дизельных электростанций, среди которых также можно упомянуть экологичность, простоту обслуживания, разный диапазон мощностей и т. д. Стоит заметить, что сегодня выпускаются дизельные электростанции, которые можно подключить к компьютеру с целью контроля их работы из рабочего кабинета, что, несомненно, делает контроль и управление дизельной установкой еще более комфортабельным.

В медицине


А Вы знаете, что дизельная электростанция может спасти жизнь человеку, ведь отключения или перебои электричества в больнице могут стоить человеческой жизни. К счастью, сегодня есть дизельные генераторы, которые в случае отключения основного источника электроснабжения начнут выполнять свою миссию спасителей, если использовать их как резервный источник электрической энергии. Купить генератор для использования в качестве резервного источника — это экономия финансовых средств, которые могут быть потеряны в случае простоя при аварии на электрической линии, это залог безопасности в банковских организациях, где есть риск потери информации в случае отключения основного источника, это обеспечение бесперебойной работы жизненно важных аппаратов в учреждениях здравоохранения. Также дизель генераторы часто используются для резервного электроснабжения в коммунальных службах.

Гражданские


Простых граждан также нередко посещает мысль о том, что нужно купить генератор. Прежде всего, это жители частных домов и владельцы дач, которые устали от постоянных сбоев в подаче электричества. Несмотря на то, что сегодня даже отдаленные от крупных городов поселки электрифицированы, качество основного источника оставляет желать лучшего, поэтому сложно обойтись без резервных источников питания. Дизельный генератор мощностью всего лишь 6-10 кВт позволяет с легкостью решить проблемы с электрообеспечением домов и дач.

В строительстве


В последние годы особым спросом пользуются дизельные генераторы в сфере строительства. Вследствие внедрения новых технологий возникла необходимость в бесперебойной подаче электрической энергии на строительных площадках. Решить эту проблему были призваны дизель генераторы — устройства, которые могут на длительное время обеспечить электроэнергией все участки работ. Поэтому аренда дизельных генераторов является востребованной услугой на строительных площадках. Как вариант, для обеспечения электрической энергией важных строительных объектов можно купить компактный переносной генератор. Такие дизельгенераторы позволяют подключать электродрели, сварочные аппараты и другие необходимые инструменты. Как правило, крупные строительные компании отдают предпочтение дизельным генераторам средней мощности. Обычно, мощность дизельгенераторов для проведения различного рода строительных работ составляет 100-2000 кВт.


Мощность дизельной электростанции необходимо выбирать, исходя их характера осуществляемых работ и типа подключаемого оборудования. Использование современных дизель генераторов позволяет снабдить электроэнергией целый цех, не прерывая при этом производство. Это оборудование может решить вопрос с электроснабжением частей зданий и необходимых устройств, например, крановые электродвигатели, которые установлены для привода механизма крана.

Экстремальные условия


Применяются дизельные электростанции и для работы в экстремальных климатических условиях. В таких случаях используются электростанции в специальных блок-контейнерах типа «Север», которые находят своё применение в качестве аварийных или основных источников электроэнергии при строительстве и эксплуатации горно-обогатительных комбинатов, нефтегазовых скважин и вахтовых поселков. А также используются для энергообеспечения в отдаленных районах Крайнего Севера. Оснащаются такие дизельные электростанции охранно-пожарной сигнализацией, поэтому при использовании являются полностью безопасными.

Купить дизельный генератор — это решение проблем электрообеспечения поселков и небольших населенных пунктов. В тех местностях, где отсутствует центральное электроснабжение, либо же очень часто бывают перебои с подачей электроэнергии, дизельные электростанции — доступная альтернатива. В зависимости от потребностей населенного пункта, применяются электростанции мощностью до 30 кВт, от 30 кВт до 100 кВт, от 100 кВт до 300 кВт, от 300 кВт до 500 кВт, от 500 кВт до 1000 кВт и свыше 1000 кВт — контейнерные электростанции, которые состоят из нескольких генераторов.

Аренда или покупка


Наверняка, многие слышали об услуге аренды, осуществляемая на длительной или краткосрочной основе. Так как одним из преимуществ аренды дизельных генераторов является низкая стоимость услуги, многие берут в аренду необходимое оборудование для решения проблем с электрообеспечением. Это подходящая услуга для тех, кто нуждается в основном или резервном источнике питания на определенный период, или же хочет испытать дизельный генератор, чтоб в будущем не сомневаться в необходимости приобретения этого агрегата.


Когда требуется источник электропитания для проведения разовых выставок, концертов, ярмарок, праздничных или спортивные мероприятий, лучшим решением будет аренда, поскольку нет смысла покупать это оборудование в таких случаях. Нередко аренда интересует людей, перед которыми стоит задача строительства, например, загородного дома. Строительство — трудоемкий и дорогостоящий процесс, поэтому аренда оборудования является идеальным решением. Многие, кто затеял строительство, понимают, что им не нужна покупка некоторых устройств, а вот аренда очень кстати.


Наша компания предлагает услугу «аренда дизельных генераторов», воспользоваться которой может каждый. Мы можем предложить аренд необходимой мощности в интересующем варианте исполнения, включая доставку и предложение полного объема дополнительных услуг. Дизельгенераторы — это современное решение проблем с электроснабжением. Купить или взять в аренду Вы всегда можете с помощью нашего сайта, специалисты помогут Вам сделать правильный выбор и решить все возникающие вопросы. Мы поможем Вам обрести энергетическую свободу и независимость.

Генерирование электрической энергии. Трансформаторы. — О’Пять пО физике!

Генератор
устройство превращающее энергию различного вида в электрическую. Генераторы
вырабатывают электрический ток. Примеры генераторов: гальванические элементы,
электростатические машины, солнечные батареи и др. В зависимости от
характеристик применяются генераторы различных типов.

Например, с
помощью электростатических машин можно создать очень высокое напряжение, но при
этом сила тока будет очень невелика. А с помощью гальванических элементов можно
создать приемлемую силу тока, но они могут работать лишь непродолжительное время.

Структура генератора 

Рассмотрим
индукционный электромеханический генератор переменного тока. Генераторов такого
типа много, но любой из них имеет общие основные детали.

  • Постоянный
    или электромагнит. С помощью него создается магнитное поле.
  • Обмотка.
    В ней индуцируется переменная ЭДС.

Амплитуда ЭДС
наводится в каждом витке обмотки. Так как витки соединены последовательно
значения ЭДС будут складываться. ЭДС в рамке будет пропорциональна числу витков
в обмотке. Для получения большого значения магнитного потока в генераторах
делают специальную систему из двух сердечников.

В пазах одного
сердечника размещаются обмотки, которые создают магнитное поле, а в пазах
другого, обмотки, в которых индуцируется ЭДС. Один из сердечников вращается,
его называют ротором. Второй неподвижен и называется статором. Зазор между
сердечниками стараются сделать как можно меньшим, чтобы увеличить поток вектора
магнитной индукции.

На рисунке
представлена модель простейшего генератора.

Принцип действия генератора 

В генераторе,
модель которого представлена на рисунке, магнитное поле создается
постоянным магнитом, а проволочная рамка вращается внутри него. В принципе,
можно оставить рамку неподвижной и вращать магнит. От этого
ничего бы не изменилось.

В промышленных
генераторах именно так и делается. Вращается электромагнит, а обмотки, в
которых появляется ЭДС остаются неподвижными. Это связано с тем, что для того,
чтобы подвести ток к ротору или снять с обмоток ротора, необходимо использовать
скользящие контакты. Для этого используются щетки и контактные кольца. Сила
тока, которая заставит вращаться ротор, много меньше, чем та, которую мы снимем
с обмоток.

Поэтому удобнее
подводить ток к ротору, а снимать ток со статора. В генераторах малой мощности,
для создания магнитного поля используют вращающийся постоянный магнит, тогда
подводить ток к ротору вообще необязательно. И использовать щетки и кольца не
нужно.

При вращении
ротора, в обмотках статора возникает ЭДС. Это происходит потому, что возникает
вихревое электрическое поле. Современные генераторы это очень большие машины.
Причем при таких размерах (несколько метров), некоторые важнейшие внутренние
части изготавливаются с точность до миллиметра. 

Генераторы,
которые стоят на электростанциях, вырабатывают очень мощное ЭДС. На практике
такое напряжения редко когда бывает нужно. Поэтому такое напряжение необходимо
преобразовывать.

Для
преобразования напряжения используются устройства, называются трансформаторами.
Трансформаторы могут как и повысить напряжение, так и понизить его. Существуют
также стабилизирующие трансформаторы, которые не повышают и не понижают
напряжение.

Рассмотрим
устройство трансформатора на следующем рисунке.

              условное обозначение  трансформатора:        

Устройство и работа трансформатора

Трансформатор
состоит из двух катушек с проволочными обмотками. Эти катушки надевают на
стальной сердечник. Сердечник не является монолитным, а собирается из тонких
пластин.

Одна из обмоток
называется первичной. К этой обмотке подсоединяют переменное напряжение,
которое идет от генератора, и которое нужно преобразовать. Другая обмотка
называется вторичной. К ней подсоединяют нагрузку. Нагрузка это все приборы и
устройства, которые потребляют энергию.

На следующем
рисунке представлено условное обозначение трансформатора.

картинка

Работа
трансформатора основана на явлении электромагнитной индукции. Когда через
первичную обмотку проходит переменный ток, в сердечнике возникает переменный
магнитный поток. А так как сердечник общий, магнитный поток индуцирует ток и в
другой катушке.

В первичной
обмотке трансформатора имеется N1 витков, её полная ЭДС индукции
равняется e1 = N1e, где е – мгновенное значение ЭДС
индукции во всех витках. е одинаково для всех витков обоих катушек.

Во вторичной
обмотке имеется N2 витков. В ней индуцируется ЭДС e2 = N2
e.

Следовательно: e1/e2
= N1/ N2.

Сопротивлением
обмоток пренебрегаем. Следовательно, значения ЭДС индукции и напряжения будут
приблизительно равны по модулю: |u1|≈|e1|.

При разомкнутой
цепи вторичной обмотки в ней не идет ток, следовательно: |u2|=|e2|.

Мгновенные
значения ЭДС e1, e2 колеблются в одной фазе. Их отношение
можно заменить отношением значений действующих ЭДС: E1 и E2.
А отношение мгновенных значений напряжения заменим действующими значениями
напряжения. Получим:

E1/E2
≈U1/U2 ≈N1/ N2 = K

К – коэффициент
трансформации. При K>0 трансформатор повышает напряжение, при
K<0
 – трансформатор понижает напряжение. Если же к концам
вторичной обмотки подключить нагрузку, то во второй цепи появится переменный
ток, который вызовет появление в сердечнике еще одного магнитного потока.

Это магнитный
поток будет уменьшать изменение магнитного потока сердечника. Для нагруженного
трансформатора будет справедлива следующая формула: U1/U2
I2/I1.

То есть при
повышении напряжения в несколько раз, мы во столько же раз уменьшим силу тока.

Электрогенератор | инструмент | Британника


Полная статья

Электрогенератор , также называемый динамо , любая машина, преобразующая механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение полярности в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора.На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, причем две стороны размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора.Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° из положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже.Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Роторная конструкция генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту.Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °. Напряжение, индуцированное в катушке статора, которое охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов.Возможные значения скорости ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Электрогенератор | инструмент | Британника


Полная статья

Электрогенератор , также называемый динамо , любая машина, преобразующая механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям.Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели.Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение полярности в секунду). Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Частной формой переменного тока является синусоида, которая имеет форму, показанную на рисунке 1.Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены, и в результате они имеют одинаковую форму. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора.На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, причем две стороны размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора.Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° из положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже.Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Роторная конструкция генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту.Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °. Напряжение, индуцированное в катушке статора, которое охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов.Возможные значения скорости ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Электрогенератор | инструмент | Британника


Полная статья

Электрогенератор , также называемый динамо , любая машина, преобразующая механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям.Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели.Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение полярности в секунду). Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Частной формой переменного тока является синусоида, которая имеет форму, показанную на рисунке 1.Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены, и в результате они имеют одинаковую форму. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора.На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, причем две стороны размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора.Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° из положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже.Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Роторная конструкция генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту.Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °. Напряжение, индуцированное в катушке статора, которое охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов.Возможные значения скорости ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Определение: Электрогенератор | Информация об открытой энергии

Устройство для преобразования механической энергии в электрическую. Примечание: EIA определяет «электрический генератор» как объект, а не как устройство; согласно определению EIA, примеры включают электроэнергетические компании и независимых производителей энергии. [1] [2]

Определение Википедии

При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем.Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электричества и часто делают приемлемые ручные генераторы. При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы.Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электроэнергии, и часто можно использовать ручные генераторы. Все, что я должен сказать, это скучно! Неудачники HAHA, если вы действительно найдете эти интересные шутки на вас, (Эта статья о генерации электромагнитной энергии.Для электростатических генераторов, таких как машина Ван де Граафа, см. Электростатический генератор. Для устройств для преобразования фотонов в электричество см. Фотоэлектрическую панель.) При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем.Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электроэнергии, и часто можно использовать ручные генераторы. Почему бы и нет, прежде чем читать подробности; Посмотрите на пример хорошо зарекомендовавшей себя британской компании, предоставляющей дизельные генераторы или генераторы в аренду, продажу, запчасти и обслуживание.Ведущий пример поставщика и экспертной фирмы: (Эта статья посвящена производству электромагнитной энергии. Для электростатических генераторов, таких как машина Ван де Граафа, см. Электростатический генератор. Информацию об устройствах для преобразования фотонов в электричество см. В фотоэлектрической панели.)

В электричестве Генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы.Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электроэнергии, и часто из них можно получить приемлемые ручные генераторы. Https://en.m.wikipedia.org/wiki/Electric_generator# Отличный пример старых и новых генераторов.(Эта статья посвящена производству электромагнитной энергии. Для электростатических генераторов, таких как машина Ван де Граафа, см. Электростатический генератор. Для устройств, преобразующих фотоны в электричество, см. Фотоэлектрическую панель.)
При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую энергию для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы.Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электричества и часто делают приемлемые ручные генераторы. При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи.Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. являются примером гендерного поставщика услуг по аренде и продажам в Великобритании с подразделениями, обслуживающими многие секторы бизнеса по всей Великобритании. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего.Многие двигатели могут приводиться в действие механически для выработки электричества и часто делают приемлемые ручные генераторы. При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем.Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механически для выработки электричества и часто делают приемлемые ручные генераторы. Идея, используемая в этом устройстве — теорема «левой руки Флеминга». При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую. мощность для использования во внешней цепи.Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут приводиться в действие механическим способом для выработки электроэнергии, и чаще всего они представляют собой приемлемые ручные генераторы.В производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего.Многие двигатели могут приводиться в действие механическим способом для выработки электричества, часто они делают приемлемые ручные генераторы. При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем.Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут иметь механический привод для выработки электроэнергии; часто они делают приемлемые ручные генераторы., краткое описание Устройство, которое преобразует другую энергию в электрическую энергию Электростатические генераторы, такие как машина Ван де Граафа, генерирующие электромагнитную энергию и электромагнитный генератор — устройство, которое преобразует движущую силу (механическую энергию) в электрическую энергию для использования во внешней электрической цепи.Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы (механизмы). Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут иметь механический привод для выработки электроэнергии; часто они делают приемлемые ручные генераторы., Устройство, которое преобразует другую энергию в электрическую. Об электростатических генераторах электромагнитной энергии, таких как машина Ван де Граафа, устройства электростатического генератора для преобразования фотонов в электричество, фотоэлектрическая панель. движущая сила (механическая энергия) в электрическую мощность для использования во внешней электрической цепи. Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы (механизмы).Первый электромагнитный генератор, диск Фарадея, был изобретен в 1831 году британским ученым Майклом Фарадеем. Генераторы обеспечивают почти всю мощность электрических сетей. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут иметь механический привод для выработки электроэнергии; часто они делают приемлемые ручные генераторы. При производстве электроэнергии генератор — это устройство, которое преобразует движущую силу (механическую энергию) в электрическую для использования во внешней цепи.Источники механической энергии включают паровые турбины, газовые турбины, водяные турбины, двигатели внутреннего сгорания, ветряные турбины и даже ручные кривошипы. Первый электромагнитный генератор, [диск Адай]], был изобретен в 1831 году британским ученым. нераторы обеспечивают почти полную мощность для. Обратное преобразование электрической энергии в механическую осуществляется электродвигателем, а двигатели и генераторы имеют много общего. Многие двигатели могут иметь механический привод для выработки электроэнергии; часто они делают приемлемые ручные генераторы.

Также известен как
Генератор
Связанные термины
Электроэнергия, Энергия
Список литературы
  1. ↑ http://www1.eere.energy.gov/site_administration/glossary.html
  2. ↑ http://205.254.135.24/tools/glossary/index.cfm?id=E

Как работают генераторы? | BigRentz

Генераторы — это полезные устройства, которые обеспечивают электричеством без необходимости доступа к электросети.Они могут служить резервным источником питания для рабочих площадок, домов и предприятий, а также поддерживать работу критически важных систем при отключении электроэнергии. Итак, как работают генераторы?

Проще говоря, генераторы работают путем преобразования механической энергии в электрическую с помощью двигателя, генератора переменного тока и внешнего источника топлива. Современные генераторы работают по принципу электромагнитной индукции, термин, придуманный Майклом Фарадеем, когда он обнаружил, что проводник, движущийся в магнитном поле, может создавать и направлять электрические заряды.

Понимание того, как работают генераторы, может помочь вам выявить проблемы, выполнить текущее обслуживание и выбрать правильный генератор, соответствующий вашим конкретным потребностям. В этом руководстве мы шаг за шагом рассмотрим основные компоненты генератора и их работу.

8 основных компонентов генератора

Современные электрические генераторы могут различаться по размеру и применению, но их внутреннее устройство в целом одинаково. К основным компонентам электрогенератора относятся:

  • Рама: Рама содержит и поддерживает компоненты генератора.Это позволяет людям безопасно обращаться с генератором и защищает его от повреждений.
  • Двигатель: Двигатель вырабатывает механическую энергию, которая преобразуется в электрическую энергию. Размер двигателя определяет максимальную выходную мощность, и он может работать на различных типах топлива.
  • Генератор: Генератор содержит дополнительные компоненты, которые работают вместе для выработки электрической мощности. К ним относятся статор и ротор, которые отвечают за создание вращающегося магнитного поля и выработку переменного тока на выходе.
  • Топливная система: Генераторы поставляются с прикрепленным или внешним топливным баком, который снабжает двигатель топливом. Топливный бак подключается через подающий и возвратный трубопроводы и обычно содержит бензин или дизельное топливо.
  • Выхлопная система: Дизельные и бензиновые двигатели выделяют выхлопные газы, содержащие токсичные химические вещества. Выхлопная система безопасно управляет и удаляет эти газы через трубу, сделанную из железа или стали.
  • Регулятор напряжения: Этот компонент отвечает за регулирование выходного напряжения генератора.Регулятор напряжения запускает цикл преобразования переменного тока в переменное напряжение, когда генератор опускается ниже своего максимального рабочего уровня, и он переходит в состояние равновесия, когда генератор достигает своей рабочей мощности.
  • Зарядное устройство: Генераторы запускаются от аккумулятора. Зарядное устройство для батареи отвечает за поддержание заряда батареи, обеспечивая постоянное напряжение, равное 2,33 В на элемент.
  • Панель управления: Панель управления расположена снаружи генератора и содержит несколько датчиков и переключателей.Характеристики могут отличаться в зависимости от генератора, но панель управления обычно включает в себя стартер, датчики управления двигателем и переключатель частоты.

Для чего используется электрический генератор?

Электрогенераторы предназначены как для личного, так и для коммерческого использования. Чаще всего они используются в качестве резервного источника питания в случае отключения электроэнергии или отключения электроэнергии, но они также могут функционировать в качестве основного источника питания для зданий или строительных площадок, не подключенных к электросети.

Резервные генераторы — это тип, наиболее часто используемый для резервного питания в домах, офисах и медицинских учреждениях.Эти генераторы подключаются к электрической системе здания и автоматически запускаются при отключении электроэнергии. После установки они являются постоянными приспособлениями, а их топливные баки обычно достаточно велики, чтобы обеспечивать питание в течение нескольких дней, прежде чем потребуется дозаправка.

Переносные генераторы

меньше по размеру и их легче перемещать, чем резервные модели, что делает их идеальными для питания электроприборов, дорожного оборудования и строительной техники на рабочих площадках. Они бывают разных размеров и мощностей для разных применений.Переносные генераторы меньшего размера могут приводить в действие только один или два инструмента одновременно, в то время как самые большие модели могут приводить в действие целые здания.

Как генераторы производят электроэнергию: поэтапная поломка

Генераторы фактически не производят электричество. Скорее они преобразуют механическую энергию в электрическую. Процесс можно разбить на следующие этапы:

Шаг 1: Двигатель использует бензин, дизельное топливо, пропан, природный газ или возобновляемые источники энергии для создания механической энергии.

Шаг 2: Генератор переменного тока использует механическую энергию, вырабатываемую двигателем, для проталкивания электрических зарядов, присутствующих в проводке генератора, через электрическую цепь.

Шаг 3: Движение создает движение между магнитным и электрическим полями. Во время этого процесса ротор создает движущееся магнитное поле вокруг статора, которое содержит неподвижные электрические проводники.

Шаг 4: Ротор преобразует постоянный ток в выходной сигнал переменного напряжения.

Шаг 5: Генератор подает этот электрический ток на приборы, инструменты или электрическую систему здания.

Преимущества современных генераторов

Генераторы

существуют уже несколько десятилетий, но технологии постоянно развиваются, чтобы сделать их более эффективными и надежными. Современные генераторы теперь обладают множеством новых функций и возможностей.

Переносимость

Достижения в области технологий часто приносят пользу более компактным деталям, и генераторы не являются исключением.Более компактные и эффективные батареи и двигатели позволяют переносным генераторам работать с более длительным временем работы и более высокой выходной мощностью. Даже некоторые промышленные генераторы можно буксировать и перевозить из одного места в другое.

Небольшое воздействие на окружающую среду

Популярность генераторов, работающих на возобновляемых источниках энергии, быстро растет. Некоторые люди предпочитают отказываться от газовых и дизельных генераторов в пользу более экологичных моделей, работающих от солнечных, ветряных или водяных турбин.Природный газ также является популярным вариантом энергии для домовладельцев и владельцев бизнеса, стремящихся уменьшить свой углеродный след.

Значительная выходная мощность

Хотя не всем нужна высокая выходная мощность, предприятиям и крупным строительным площадкам обычно требуется больше мощности от своих генераторов. К счастью, современные генераторы могут иметь мощность от 300 киловатт и выше. Для работы самых больших и мощных генераторов обычно требуется дизельное топливо, но это, вероятно, изменится по мере развития технологий.

Функции шумоподавления

Чем больше генератор, тем больше шума он производит. Чтобы уменьшить шумовое загрязнение, производители начали включать в свои продукты высококачественные функции шумоподавления. Если в вашем генераторе нет этой функции, вы можете приобрести отдельный глушитель или глушитель для генератора и прикрепить его самостоятельно.

Наличие генератора под рукой позволяет продолжать работу в обычном режиме при отключении электроэнергии. Независимо от того, арендуете ли вы генератор для своего следующего строительного проекта или покупаете его для своего бизнеса, знание того, как работают генераторы, может помочь вам принять решение о следующей покупке и упростить обслуживание.

Похожие сообщения

Как работают генераторы | Компания Wisconsin Valley Improvement Company

Как работает электрический генератор

Электрогенератор — это устройство, используемое для преобразования механической энергии в электрическую.

Генератор основан на принципе «электромагнитной индукции», открытом в 1831 году Майклом Фарадеем.
Британский ученый.Фарадей обнаружил, что если электрический провод, например медный провод, провести через магнитное поле,
поле, электрический ток будет течь (индуцироваться) в проводнике. Таким образом, механическая энергия движущегося провода равна
преобразуется в электрическую энергию тока, протекающего в проводе.

Интерактивный электрический генератор

Воспользуйтесь нашим интерактивным онлайн-генератором

Обратите внимание: наш интерактивный генератор лучше всего просматривать на компьютере, и его загрузка может занять некоторое время.


Интерактивная электрическая анимация

На анимации ниже показан простой электрический генератор.В анимации механическая энергия, необходимая для поворота
Генератор идет от коричневой рукоятки на передней части генератора. На гидроэлектростанции
Механическая энергия для вращения генератора исходит от водяной турбины, которая вращается под действием падающей воды.

Кривошипная рукоятка в анимации заставляет красный провод вращаться внутри магнитного поля (синие линии). Как Фарадей
научившись, перемещение провода через магнитное поле вызывает электрический ток, протекающий в проводе.Красный провод
подключен к вольтметру, который показывает количество вырабатываемого электрического тока. На гидроэлектростанции,
Генератор подключен к линиям электропередачи, по которым электричество доставляется в ваш дом или офис.

Элементы управления анимацией позволяют управлять скоростью и направлением генератора, а также поворачивать части
включение и выключение анимации для большей наглядности. Вы также можете использовать переключатели, чтобы показать постоянный ток или генератор постоянного тока.
(с коммутатором) или переменного тока, или генератора переменного тока (без коммутатора).

Вот два изображения реальных генераторов на гидроэлектростанциях.

Электродвигатели и генераторы: преобразование электрической и механической энергии — Видео и стенограмма урока

Электромагнетизм

И двигатели, и генераторы работают из-за того, что называется электромагнитной индукцией . Обнаружил Майкл Фарадей, это когда напряжение индуцируется изменяющимся магнитным полем.С помощью электромагнитной индукции электрический ток может создаваться в катушке с проволокой, перемещая магнит внутрь или из этой катушки или перемещая катушку через магнитное поле. В любом случае напряжение создается движением.

Величина индуцированного напряжения зависит от количества витков в катушке с проводом, а также от скорости, с которой магнит перемещается через катушку. Чем больше катушек, тем больше индуцируется напряжение. Точно так же, чем быстрее магнит перемещается через катушку, тем большее напряжение вы получаете.

При чем здесь двигатели и генераторы? Итак, генератор вырабатывает электричество, вращая катушку в постоянном магнитном поле, а в двигателе через катушку пропускается ток, который заставляет его вращаться. В обоих случаях применяется закон электромагнитной индукции Фарадея, позволяющий производить электричество в своем доме, а затем использовать его для пылесоса пола, мытья посуды в посудомоечной машине, сохранения свежих продуктов в холодильнике и многого другого.

Помните, раньше мы говорили, что двигатель и генератор — одно и то же устройство, но дают противоположные результаты? Здесь мы имеем в виду, что поток электричества обратный, а не то, что сама машина работает в обратном направлении.Итак, вы не можете просто взять генератор и превратить его в двигатель, «поменяв местами» компоненты машины. Точно так же с электродвигателем вы не можете просто щелкнуть выключателем, который заставляет компоненты работать в обратном направлении для выработки электричества. Вместо этого вам нужно изменить направление потока электричества: внутрь для двигателя и наружу для генератора.

переменного и постоянного тока

Вы когда-нибудь слышали о переменном и постоянном токе? Мы не говорим об австралийской рок-группе — это ведь урок физики! Когда мы говорим о AC и DC для двигателей и генераторов, мы говорим о переменном токе и постоянном токе.Как следует из названия, переменный ток меняет направление при прохождении через цепь. Напротив, постоянный ток не меняет направления, когда он течет по цепи.

Двигатели и генераторы обычно бывают переменного или постоянного тока. Тип тока, используемого в устройстве, зависит от того, что вас больше волнует: эффективность или стоимость. Например, двигатели и генераторы переменного тока более эффективны, но и стоят дороже. Большая часть используемой вами электроники, такой как ваш мобильный телефон и планшет, зависит от мощности переменного тока из-за ее эффективности.В большинстве гибридных и электрических автомобилей также используется переменный ток.

Вы, наверное, слышали и о Томасе Эдисоне, и о Николе Тесла, но знаете ли вы, что они были вовлечены в долгую ожесточенную битву из-за этих двух типов течения? Вы не поверите, но такая простая вещь, как токи переменного и постоянного тока, долгое время вызывала широкие споры и конфликты!

В то время как Эдисон был ярым сторонником постоянного тока, Тесла поддерживал использование переменного тока. Оба были упрямыми и решительными людьми, и конфликт между ними привел к крупным ставкам, клеветническим кампаниям и натянутым отношениям между двумя мужчинами.В конце концов, поскольку AC лучше подходит для посылки большого количества энергии на большие расстояния, он победил в этой «текущей битве». Сегодня в результате ваш дом, офис и большинство других зданий подключены к сети переменного тока.

Резюме урока

Хотя вы могли бы назвать их одним и тем же устройством, генератор и электродвигатель на самом деле больше похожи на две стороны одной медали. Генератор преобразует механическую энергию в электрическую, а двигатель наоборот — преобразует электрическую энергию в механическую.Оба устройства работают из-за электромагнитной индукции , когда напряжение индуцируется изменяющимся магнитным полем.

Двигатели и генераторы обычно либо AC , либо DC , то есть они работают на переменном или постоянном токе. Как следует из их названий, переменный ток меняет направление при протекании, в то время как постоянный ток не меняет направление при движении по цепи.

Добавить комментарий

Ваш адрес email не будет опубликован.