Содержание
Расчет деревянной балки Онлайн, расчет несущей способности и прогиба деревянных балок
Распределенная нагрузка (перекрытия)
Шаг балок,мм
Нагрузка по площади, кг/кв.м
Распределенная нагрузка, кг/кв.м 150
При относительном прогибе
1/2501/2001/150
максимально допустимый прогиб для междуэтажных перекрытий, мм 16
Расчетный прогиб, мм 12
Расчетный относительный прогиб 1/333
Запас по прогибу в 1.33 раза
Разрушающая нагрузка, кг 2475
Сосредоточенная нагрузка (ригели)
Сосредоточенная нагрузка, кг
Расчетный прогиб, мм 16
Запас по прогибу в 1.33 раза
Разрушающая нагрузка, кг 1238
Программа расчета деревянных балок
Программа расчета деревянных балок перекрытия — небольшой и удобный инструмент, который упростит основные расчеты по определению сечения бруса и шага его установки при устройстве межэтажных перекрытий.
Инструкция по работе с программой
Рассмотренная программа небольшая и дополнительной установки не требует.
Интерфейс программы
Чтобы было понятнее, рассмотрим каждый пункт программы:
- Материал — выбираем требуемый материал бруса или бревна.
- Тип балки — брус или бревно.
- Размеры — длина, высота, ширина.
- Шаг балок — расстояние между балками. Изменяя данный параметр (как и размеры) можно добиться оптимального соотношения.
- Нагрузка по площади. Как правило, расчет нагрузки на перекрытия производится на этапе проектирования специалистами, но выполнить его можно и самостоятельно. Прежде всего, учитывается вес материалов, из которых изготовлено перекрытие. Например, чердачное перекрытие, утепленное легким материалом (например, минеральной ватой), с легкой подшивкой выдерживает нагрузку от собственного веса в пределах 50 кг/м². Эксплуатационная нагрузка определяется в соответствии с нормативными документами. Для чердачного перекрытия из деревянных основных материалов и с легкими утеплителем и подшивкой эксплуатационная нагрузка в соответствии со СНиП 2.01.07-85 вычисляется таким путем: 70*1,3=90 кг/м². 70 кг/м². В этом расчете берется нагрузка в соответствии с нормативами, а 1,3 – коэффициент запаса. Общая нагрузка вычисляется путем сложения: 50+90=140 кг/м². Для надежности цифру рекомендуется округлить немного в большую сторону. В данном случае можно принимать общую нагрузку за 150 кг/м². Если чердачное помещение планируется интенсивно эксплуатировать, то требуется увеличить в расчете нормативное значение нагрузки до 150. В этом случае расчет будет выглядеть следующим образом: 50+150*1,3=245 кг/м². После округления в большую сторону – 250 кг/м². Также следует проводить расчет таким образом, в случае если используются более тяжелые материалы: утеплители, подшивка для заполнения межбалочного пространства. Если на чердаке будет обустраиваться мансарда, то необходимо принимать во внимание вес пола и мебели. В этом случае общая нагрузка может составить до 400 кг/м².
- При относительном прогибе. Разрушение деревянной балки обычно происходит от поперечного изгиба, при котором в сечении балки возникают сжимающие и растягивающие напряжения. Вначале древесина работает упруго, затем возникают пластические деформации, при этом в сжатой зоне происходит смятие крайних волокон (складки), нейтральная ось опускается ниже центра тяжести. При дальнейшем росте изгибающего момента пластические деформации растут и происходит разрушение в результате разрыва крайних растянутых волокон. Максимальный относительный прогиб балок и прогонов покрытий не должен превышать 1/200.
- Среднеточечная нагрузка (для ригелей) — это нагрузка, взятая с плиты (полная) плюс собственный вес ригеля.
Похожие записи по метке:
Всего статей по ремонту в этом разделе: 29
|
|
Расчет деревянной балки перекрытия
Предлагаем вашему вниманию онлайн калькулятор расчета деревянных балок перекрытия. Этот удобный и эффективный строительный калькулятор поможет вам легко и точно произвести один из самых трудных конструкционных расчетов.
Деревянные балки межэтажного перекрытия являются несущей конструкцией. Они воспринимают нагрузку, ложащуюся на межэтажное перекрытие, и, таким образом, от их надежности в значительной степени зависит сохранность здания и безопасность его обитателей. Расчет деревянной балки перекрытия необходим для того, чтобы определить, выдержит ли балка с определенными характеристиками предполагаемую вертикальную нагрузку или же вычислить, какую именно вертикальную нагрузку способна выдержать деревянная балка с заданными характеристиками. Без такого расчета строительство или реконструкция дома с использованием деревянных балок представляются слишком рискованными – слишком слабая балка может в любой момент привести к обрушению перекрытия, а это грозит и огромным материальным ущербом и, что гораздо страшнее, к человеческим жертвам. С другой стороны, слишком большие и тяжелые балки – это и лишние расходы, и лишняя нагрузка на несущие стены и фундамент дома. Следовательно, расчет сечения деревянной балки перекрытия должен быть максимально точным, в чем вам и поможет данный онлайн-калькулятор.
Еще один важный вид строительных расчетов, касающийся балок перекрытия – расчет прогиба деревянной балки. Даже если балка достаточно прочна, чтобы не переломиться, под постоянной нагрузкой она может постепенно прогнуться. А это портит вид потолка и создает различные неудобства. Да и жить под прогнувшимися балками, даже будучи уверенным в их прочности, не слишком приятно. Согласно стандартным нормам прогиб не должен быть более 1/250 длины деревянной балки. Калькулятор расчета деревянных балок поможет вам точно подсчитать величину расчетного прогиба балки при заданных габаритах и типе древесины.
Похожее
Калькулятор балок – основные расчеты для перекрытий и стропил + видео
Балки в доме относятся обычно к стропильной системе или перекрытию, и, чтобы получить надежную конструкцию, эксплуатация которой может осуществляться без каких-либо опасений, необходимо использовать калькулятор балок.
На чем строится калькулятор балок
Когда стены уже подведены под второй этаж или под крышу, необходимо сделать перекрытие, во втором случае плавно переходящее в стропильные ноги. При этом материалы нужно подобрать так, чтобы и нагрузка на кирпичные либо бревенчатые стены не превышала допустимую, и прочность конструкции была на должном уровне. Следовательно, если вы собираетесь использовать древесину, нужно правильно подобрать балки из нее, сделать расчеты для выяснения нужной толщины и достаточной длины.
Калькулятор балок
Укажите размеры балок перекрытий и шаг.
Проседанию или частичному разрушению перекрытия могут послужить разные причины, например, слишком большой шаг между лагами, прогиб поперечин, слишком малая площадь их сечения или дефекты в структуре. Чтобы исключить возможные эксцессы, следует выяснить предполагаемую нагрузку на перекрытие, будь оно цокольное или межэтажное, после чего используем калькулятор балок, учитывая их собственную массу. Последняя может меняться в бетонных перемычках, вес которых зависит от плотности армирования, для дерева и металла при определенной геометрии масса постоянна. Исключением бывает отсыревшая древесина, которую не используют в строительных работах без предварительной сушки.
На балочные системы в перекрытиях и стропильных конструкциях оказывают нагрузку силы, действующие на изгиб сечения, на кручение, на прогиб по длине. Для стропил также нужно предусмотреть снеговую и ветровую нагрузку, которые также создают определенные усилия, прилагаемые к балкам. Также нужно точно определить необходимый шаг между перемычками, поскольку слишком большое количество поперечин приведет к лишней массе перекрытия (или кровли), а слишком малое, как было сказано выше, ослабит конструкцию.
Вам также может быть интересна статья о расчёте количества необрезной и обрезной доски в кубе: https://remoskop.ru/kolichestvo-dosok-v-kube.html
Как рассчитать нагрузку на балку перекрытия
Расстояние между стенами называется пролетом, и в помещении их насчитывается два, причем один пролет обязательно будет меньше другого, если форма комнаты не квадратная. Перемычки межэтажного или чердачного перекрытия следует укладывать по более короткому пролету, оптимальная длина которого – от 3 до 4 метров. При большем расстоянии могут потребоваться балки нестандартных размеров, что приведет к некоторой зыбкости настила. Оптимальным выходом в этом случае будет использование металлических поперечин.
Что касается сечения деревянного бруса, есть определенный стандарт, требующий, чтобы стороны балки соотносились как 7:5, то есть высота делится на 7 частей, и 5 из них должны составить ширину профиля. В этом случае деформация сечения исключается, если же отклониться от вышеуказанных показателей, то при ширине, превышающей высоту, получится прогиб, либо, при обратном несоответствии – загиб в сторону. Чтобы подобное не получилось из-за чрезмерной длины бруса, нужно знать, как рассчитать нагрузку на балку. В частности, допустимый прогиб вычисляется из соотношения к длине перемычки, как 1:200, то есть должен составлять 2 сантиметра на 4 метра.
Чтобы брус не провисал под тяжестью лагов и настила, а также предметов интерьера, можно выточить его снизу на несколько сантиметров, придав форму арки, в этом случае его высота должна иметь соответствующий запас.
Теперь обратимся к формулам. Тот же прогиб, о котором говорилось ранее, рассчитывается так: fнор = L/200, где L – длина пролета, а 200 – допустимое расстояние в сантиметрах на каждую единицу проседания бруса. Для железобетонной балки, распределенная нагрузка q на которую обычно приравнивается 400 кг/м2, расчет предельного изгибающего момента выполняется по формуле Мmax = (q · L2)/8. При этом количество арматуры и ее вес определяется по следующей таблице:
Площади поперечных сечений и масса арматурных стержней
Диаметр, мм | Площадь поперечного сечения, см2, при числе стержней | Масса 1 пог.м, кг | Диаметр, мм | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
Проволочная и стержневая арматура | |||||||||||
3 | 0.071 | 0.141 | 0.212 | 0.283 | 0.353 | 0.424 | 0.5 | 0.565 | 0.636 | 0.052 | 3 |
4 | 0.126 | 0.25 | 0.38 | 0.5 | 0.68 | 0.75 | 0.88 | 1 | 1.18 | 0.092 | 4 |
5 | 0.196 | 0.39 | 0.59 | 0.79 | 0.98 | 1.18 | 1.38 | 1.57 | 1.77 | 0.154 | 5 |
6 | 0.283 | 0.57 | 0.85 | 1.13 | 1.42 | 1.7 | 1.98 | 2.26 | 2.55 | 0.222 | 6 |
7 | 0.385 | 0.77 | 1.15 | 1.54 | 1.92 | 2.31 | 2.69 | 3.08 | 3.46 | 0.302 | 7 |
8 | 0.503 | 1.01 | 1.51 | 2.01 | 2.52 | 3.02 | 3.52 | 4.02 | 4.58 | 0.395 | 8 |
9 | 0.636 | 1.27 | 1.91 | 2.54 | 3.18 | 3.82 | 4.45 | 5.09 | 5.72 | 0.499 | 9 |
10 | 0.785 | 1.57 | 2.36 | 3.14 | 3.93 | 4.71 | 5.5 | 6.28 | 7.07 | 0.617 | 10 |
12 | 1.131 | 2.26 | 3.39 | 4.52 | 5.65 | 6.78 | 7.91 | 9.04 | 10.17 | 0.888 | 12 |
14 | 1.539 | 3.08 | 4.61 | 6.15 | 7.69 | 9.23 | 10.77 | 12.3 | 13.87 | 1.208 | 14 |
16 | 2.011 | 4.02 | 6.03 | 8.04 | 10.05 | 12.06 | 14.07 | 16.08 | 18.09 | 1.578 | 16 |
18 | 2.545 | 5.09 | 7.63 | 10.17 | 12.7 | 15.26 | 17.8 | 20.36 | 22.9 | 1.998 | 18 |
20 | 3.142 | 6.28 | 9.41 | 12.56 | 15.7 | 18.84 | 22 | 25.13 | 28.27 | 2.465 | 20 |
22 | 3.801 | 7.6 | 11.4 | 15.2 | 19 | 22.81 | 26.61 | 30.41 | 34.21 | 2.984 | 22 |
25 | 4.909 | 9.82 | 14.73 | 19.64 | 24.54 | 29.45 | 34.36 | 39.27 | 44.18 | 3.85 | 25 |
28 | 6.153 | 12.32 | 18.47 | 24.63 | 30.79 | 36.95 | 43.1 | 49.26 | 55.42 | 4.83 | 28 |
32 | 8.043 | 16.09 | 24.18 | 32.17 | 40.21 | 48.26 | 56.3 | 64.34 | 72.38 | 6.31 | 32 |
36 | 10.179 | 20.36 | 30.54 | 40.72 | 50.89 | 61.07 | 71.25 | 81.43 | 91.61 | 7.99 | 36 |
40 | 12.561 | 25.13 | 37.7 | 50.27 | 62.83 | 75.4 | 87.96 | 100.53 | 113.1 | 9.865 | 40 |
45 | 15.904 | 31.81 | 47.71 | 63.62 | 79.52 | 95.42 | 111.33 | 127.23 | 148.13 | 12.49 | 45 |
50 | 19.635 | 39.27 | 58.91 | 78.54 | 98.18 | 117.81 | 137.45 | 157.08 | 176.72 | 15.41 | 50 |
55 | 23.76 | 47.52 | 71.28 | 95.04 | 118.8 | 142.56 | 166.32 | 190.08 | 213.84 | 18.65 | 55 |
60 | 28.27 | 56.54 | 84.81 | 113.08 | 141.35 | 169.62 | 197.89 | 226.16 | 254.43 | 22.19 | 60 |
70 | 38.48 | 76.96 | 115.44 | 153.92 | 192.4 | 220.88 | 269.36 | 307.84 | 346.32 | 30.21 | 70 |
80 | 50.27 | 100.54 | 150.81 | 201.08 | 251.35 | 301.62 | 351.89 | 402.16 | 452.43 | 39.46 | 80 |
Семипроволочные канаты класса К-7 | |||||||||||
4.5 | 0.127 | 0.25 | 0.38 | 0.51 | 0.64 | 0.76 | 0.89 | 1.01 | 1.14 | 0.102 | 4.5 |
6 | 0.226 | 0.45 | 0.68 | 0.9 | 1.13 | 1.36 | 1.58 | 1.81 | 2.03 | 0.181 | 6 |
7.5 | 0.354 | 0.71 | 1.06 | 1.41 | 1.77 | 2.12 | 2.48 | 2.83 | 3.18 | 0.283 | 7.5 |
9 | 0.509 | 1.02 | 1.53 | 2.04 | 2.54 | 3.05 | 3.56 | 4.07 | 4.58 | 0.407 | 9 |
12 | 0.908 | 1.82 | 2.72 | 3.63 | 4.54 | 5.45 | 6.35 | 7.26 | 8.17 | 0.724 | 12 |
15 | 1.415 | 2.83 | 4.24 | 5.66 | 7.07 | 8.49 | 9.9 | 11.32 | 12.73 | 1.132 | 15 |
Нагрузка на любую балку из достаточно однородного материала рассчитывается по ряду формул. Для начала высчитывается момент сопротивления W ≥ М/R. Здесь М – это максимальный изгибающий момент прилагаемой нагрузки, а R – расчетное сопротивление, которое берется из справочников в зависимости от используемого материала. Поскольку чаще всего балки имеют прямоугольную форму, момент сопротивления можно рассчитать иначе: Wz = b · h2 /6, где b является шириной балки, а h – высотой.
Что еще следует знать про нагрузки на балку
Перекрытие, как правило, является заодно и полом следующего этажа и потолком предыдущего. А значит, нужно сделать его таким, чтобы не было риска объединить верхние и нижние помещения путем банального перегруза меблировкой. Особенно такая вероятность возникает при слишком большом шаге между балками и отказе от лагов (дощатые полы настилаются прямо на брус, уложенный в пролеты). В этом случае расстояние между поперечинами напрямую зависит от толщины досок, например, если она составляет 28 миллиметров, то длина доски не должна быть более 50 сантиметров. При наличии лагов минимальный промежуток между балками может достигать 1 метра.
Также обязательно следует учитывать массу утеплителя, используемого для пола. Например, если укладываются маты из минеральной ваты, то квадратный метр цокольного перекрытия будет весить от 90 до 120 килограммов, в зависимости от толщины термоизоляции. Опилкобетон увеличит массу такого же участка в два раза. Использование же керамзита сделает перекрытие еще тяжелее, поскольку на квадратный метр будет приходиться нагрузка в 3 раза больше, чем при укладке минеральной ваты. Далее, не следует забывать про полезную нагрузку, которая для межэтажных перекрытий составляет 150 килограммов на квадратный метр минимум. На чердаке достаточно принять допустимую нагрузку в 75 килограммов на квадрат.
Оцените статью: Поделитесь с друзьями!
Расчет деревянной балки перекрытия на прогиб, пример, таблица
Применяется и такое конструктивное решение, когда несущие элементы перекрытия являются частью стропильных конструкций. В этом случае балка является конструкцией для формирования свеса, то она опирается на мауэрлат и имеет выпуск за внешнюю грань каждой стены примерно на 500 мм. Это конструктивное решение может увеличить её длину примерно на 1 метр.
Производя подбор и расчет деревянных балок необходимо помнить, что самым оптимальным расстоянием, которое можно перекрывать, применяя эти конструктивные элементы, является 6 метровый пролет.
При необходимости перекрывать большие расстояния рекомендуется использование деревянных конструкций прямоугольного или двутаврового сечения изготовленных из клееного бруса или применять промежуточные конструкции, такие как стойки, колонны, декоративные арки и т.п.
Сбор нагрузок воздействующих на балки
Диапазон различного вида нагрузок действующих на несущие конструкции достаточно велик. Он различается исходя из целевого применения балки, то есть ответа на вопрос эта балка располагается в междуэтажном или чердачном перекрытии. Конструкции междуэтажных перекрытий несут нагрузку в основном только от веса самого перекрытия, от процесса жизнедеятельности людей которые там находятся и того производственного процесса который там проходит.
Так расчетная нагрузка на междуэтажное перекрытие в жилых зданиях равна 150кг/м2 х 1,3 = 195 кг/м2.
Коэффициент 1,3 обеспечивает надежность работы конструкции. Вес междуэтажного перекрытия включает вес балок, полов, конструкций потолка, утеплителя. При производстве расчетов вес междуэтажного перекрытия лучше всего рассчитывать в каждом случае индивидуально.
Нагрузка на чердачное перекрытие, эксплуатация которого не предусматривает 70 кг/м2 х 1,3 = 91 кг/м².
Вес самого чердачного перекрытия включает в себя вес балок, утеплителя, материала зашивки и составляет 50 кг/м2. В случае, если балка является не только чердачным перекрытием, но и входит в конструкцию стропильной системы здания, то её расчет производится в составе стропильных конструкций.
В случае, когда величина прогиба превышает указанные величины, это может нанести существенные деформационные изменения в геометрии потолочных конструкций. Так при длине балки перекрытия 6 метров величина допустимого прогиба будет составлять 17 мм. Если предположить, что потолок в помещении будет из гипсокартонных плит, то образование трещин неминуемо. Поэтому производя расчет, следует сразу же учитывать материал, из которого будет выполняться конструкция потолка. Если заказчик для оформления потолка будет использовать подвесные конструкции типа «Армстронг», то беспокоиться не о чем, а если для отделки будут применяться материалы на основе гипса, минеральных вяжущих, то возможно стоит увеличить надежность перекрытия и увеличить сечение балок, чтобы полностью исключить возможность прогиба.
Расчеты деревянных балок перекрытия — онлайн расчет по формуле
В любом здании имеются перекрытия. В собственных домах при создании опорной части, применяются деревянные балки, которые обладают рядом потребительских свойств:
- доступность на рынке;
- лёгкость обработки;
- цена значительно ниже, нежели на стальные или бетонные конструкции;
- высокая скорость и удобство монтажа.
Но, как и всякий строительный материал, деревянные балки имеют определённые прочностные характеристики исходя из которых производится расчёт на прочность, определяются необходимые размеры силовых изделий.
Основные виды балок
При бытовом строительстве используются несколько типов монтажа опорных элементов перекрытий:
- Простая балка, — представляет собой перекладину, имеющую две опорные точки на своих концах. Расстояние между опорами называется пролёт. Соответственно, при наличии нескольких точек крепления, бывают двух–, трёх–, и более пролётные неразрезные балки. В конструкции частного дома в этом качестве выступают промежуточные стеновые перегородки.
- Консоль, — брус жёстко закреплён одним концом в стене или имеет один свободный конец, с длиной более чем двукратный поперечный размер. Наличие двух свободных свисающих частей говорит о том, что наличествует двухконсольная конструкция. На практике – это горизонтальные балки, входящие в состав крыши и образующие навес.
- Заделанное изделие, — оба окончания жёстко вмонтированы в стену. Такая схема встречается при возведении вышерасположенных перегородок и стен, при этом балка получается вмонтированной в вертикальную конструкцию.
Нагрузки на горизонтальное перекрытие
Для расчёта на прочность необходимо знать нагрузки, возникающие в процессе эксплуатации перекрытия. Самые значительные величины возникают на первом этаже жилого здания. Меньшие значения получаются для мансардных конструкций и чердачных помещений. Напряжения в балке возникают:
- от внутренних строительных конструкций, например, перегородок, лестниц;
- от веса бытовой техники, мебели;
- от массы людей.
Статическую нагрузку определяет два основных вида напряжения, – прогиб по всей длине и изгиб в месте опоры.
- Прогиб, – получается от веса вышерасположенных элементов. Максимальная стрелка отклонения получается в точке местонахождения объекта с самой большой массой и (или) посередине между опорами.
- Изгиб или излом, – это разрушение перекладины в точке заделки. Возникает от вертикальной нагрузки, а сама балка, воспринимающая это напряжение, выступает в роли рычага. С определённой величины усилия начинается критический изгиб, приводящий к разрушению поперечной опоры.
Для уменьшения влияния на прочность деревянного поперечного изделия от внутренних конструкций, их стараются располагать в местах нахождения нижних опор. Бытовую технику и мебель по возможности, целесообразно размещать вдоль стен или около разгрузочных конструкций.
Существует достаточно много типов деревянных балок, но наиболее доступны для широкой массы населения – это изделия прямоугольного или овального сечения. В последнем случае, балка представляет собой оцилиндрованное бревно, обрезанное с двух противоположных сторон.
Как рассчитать нагрузку на балку перекрытия
Общая нагрузка на элементы перекрытия складывается из собственного веса конструкции, веса от внутренних строительных изделий, опирающихся на балки, а также массы людей, мебели, бытовой техники и прочей хозяйственной утвари.
Полный расчёт, учитывающий все технические нюансы, достаточно сложен и выполняется специалистами при проектировании жилого дома. Для граждан, возводящих жильё по принципу «самостроя», более удобна упрощённая схема, в которую заложены требования СНиП, оговаривающие условия и технические характеристики деревянных материалов:
- длина опорной части балки, контактирующей с фундаментом или стеной, не должна быть меньше 12 см;
- рекомендуемое соотношение сторон прямоугольника 5/7, — ширина меньше высоты;
- допустимый прогиб для чердачного помещения составляет не более 1/200, межэтажные перекрытия – 1/350.
По СНиП 2.01.07–85 эксплуатационная нагрузка на чердачную конструкцию с лёгким утеплителем из минеральной ваты составит:
G = Q + Gn * k, где:
- k – коэффициент запаса прочности, обычно для строений малой этажности принимают значение 1,3;
- Gn – норматив для подобного чердака, равный 70 кг/м²; при интенсивном использовании чердачного пространства значение составит не менее 150 кг/м²;
- Q – нагрузка от самого чердачного перекрытия, равная 50 кг/м².
Пример расчёта
Дано:
- чердак в жилом доме, использующийся для хранения различного хозяйственного инвентаря;
- для утепления применён керамзит с лёгкой бетонной стяжкой.
Общая нагрузка составит G = 50 кг/м² + 150 кг/м² * 1,3 = 245 кг/м².
Исходя из практики, средние усилия на мансардном этаже не превышают значений в 300–350 кг/м².
Для межэтажных перекрытий величины находятся в диапазоне 400–450 кг/м², причём большее значение следует принимать при расчётах первого этажа.
Совет. При выполнении перекрытий целесообразно принимать значения нагрузок, превышающие расчётные на 30–50%. Это повысит надёжность конструкции в целом и увеличит общий срок эксплуатации.
Как рассчитать необходимое количество балок
Число поперечных опор определяется нагрузками, приходящиеся на них, и максимальным прогибом чернового покрытия, выполненного, например, из доски или фанеры. На их жёсткость влияет собственная толщина изделий и шаг между точками опоры, то есть, расстояние от соседних балок.
Для помещения с малой эксплуатацией (чердак), допускается использовать доску толщиной не менее 25 мм, при шаге между опорами 0,6–0,75 метра. Межэтажное перекрытие жилой зоны целесообразно осуществлять половой доской с размером не менее 40 мм и расстоянием по ближайшим точкам крепления не более 1 метра.
Пример расчёта
Чердачное пространство. Длина между стенами составляет 5 метров. Слабая эксплуатационная нагрузка, – хранение всякой утвари. Настил осуществляется из обрезной сухой доски хвойных пород толщиной 25 мм. Принимая максимальный шаг в 0,75 метра, количество опорных точек должно составить:
5 м / 0,75 м = 6,67 шт., округляя до целого числа в большую сторону – 7 балок.
Тогда уточнённый шаг равен:
5 м / 7 шт = 0,715 м.
Межэтажное перекрытие. Длина между стенами 5 метров. Первый этаж с максимальной нагрузкой. Черновой пол выполняется из изделия с размером 40 мм. Шаг по опорам принимается в 1 метр.
Количество точек крепления составляет: 5 м / 1 м = 5 шт.
Совет. Несмотря на невысокую нагрузку, приходящуюся на чердачное пространство, целесообразно применять требования, относящиеся к межэтажным перекрытиям, — в будущем может появиться вероятность перестройки в жилое мансардное помещение.
Как рассчитать необходимое сечение традиционной деревянной балки перекрытия
Прочностные характеристики опорного элемента определяются геометрическими параметрами, – длиной и поперечным сечением. Длина, как правило, даётся из внутренних размеров межстенного пространства и закладывается на стадии проектирования здания. Второй параметр, – сечение, можно изменять в зависимости от предполагаемых нагрузок в процессе строительства.
Пример расчёта
Чтобы избежать достаточно мудрёных математических выкладок, приводим рекомендуемые данные, которые сведены в таблицу. При имеющихся размерах пролёта и шага, можно определить примерное сечение бруса или диаметр бревна. Расчёт осуществлялся исходя из усреднённой нагрузки в 400 кг/м²
Таблица 1
Сечение прямоугольного бруса:
Шаг, метр | Пролёт, метр | ||||
2,0 | 3,0 | 4,0 | 5,0 | 6,0 | |
0,6 | 75 х 100 | 75 х 200 | 100 х 200 | 150 х 200 | 150 х 225 |
1,0 | 75 х 150 | 100 х 175 | 125 х 200 | 150 х 225 | 175 х 250 |
Таблица 2
Диаметр оцилиндрованного бревна:
Шаг, метр | Пролёт, метр | ||||
2,0 | 3,0 | 4,0 | 5,0 | 6,0 | |
0,6 | 110 | 140 | 170 | 200 | 230 |
1,0 | 130 | 170 | 210 | 240 | 270 |
Примечание: В таблицах приведены минимальные допустимые размеры. При проектировании собственного здания, необходимо принимать те размеры деревянных изделий, которые присутствуют на местном строительном рынке региона, причём значения требуется округлять в большую сторону.
Совет. При отсутствии необходимого бруса, его можно заменить досками, скреплёнными между собой посредством столярного клея и саморезов. Ещё один вариант усиления – увеличить сечение бруса, добавив к его боковым сторонам доски определённой толщины.
Совет. Продлить срок службы и снизить показатель горючести поможет обработка специальными огне– и биозащитными средствами. Кроме этого, такая операция способствует небольшому увеличению прочности деревянных изделий.
Совет. Тем, кто всё-таки желает провести математические изыскания, по расчётам деревянных балок, для перекрытий, целесообразно заглянуть в интернет с этим вопросом, — имеется достаточное количество сайтов, на которых выложены электронные калькуляторы по определению параметров элементов силовых конструкций.
Статья была полезна?
0,00 (оценок: 0)
Бесплатный калькулятор луча | Калькулятор изгибающего момента, поперечной силы и прогиба
Добро пожаловать в наш бесплатный онлайн-калькулятор диаграмм изгибающего момента и поперечной силы, который может генерировать диаграммы реакций, поперечных сил (SFD) и изгибающих моментов (BMD) консольной балки или просто поддерживаемой балки. Используйте этот калькулятор пролета балки, чтобы определить реакции на опоры, построить диаграмму сдвига и момента для балки и рассчитать прогиб стальной или деревянной балки. Бесплатный онлайн-калькулятор балки для создания реакций, расчета прогиба стальной или деревянной балки, построения диаграмм сдвига и момента балки.Это бесплатная версия нашего полного программного обеспечения SkyCiv Beam. Доступ к нему можно получить из любой из наших Платных учетных записей, которая также включает в себя полное программное обеспечение для структурного анализа.
Используйте интерактивное окно выше, чтобы просмотреть и удалить длину балки, опоры и добавленные нагрузки. Любые внесенные изменения автоматически перерисовывают диаграмму свободного тела для любой балки с опорой или консольной балкой. Калькулятор реакции балки и расчет изгибающего момента будут запущены после нажатия кнопки «Решить» и автоматически сгенерируют диаграммы сдвига и изгибающего момента.Вы также можете щелкнуть отдельные элементы этого калькулятора балки LVL, чтобы редактировать модель.
Калькулятор пролета балки легко рассчитает реакции на опорах. Он может рассчитывать реакции на опорах консольных или простых балок. Это включает в себя расчет реакций для консольной балки, которая имеет реакцию изгибающего момента, а также силы реакции x, y.
Вышеупомянутый калькулятор пролета стальной балки — это универсальный инструмент для проектирования конструкций, используемый для расчета изгибающего момента в алюминиевой, деревянной или стальной балке.Его также можно использовать в качестве калькулятора несущей способности балки, используя его в качестве калькулятора напряжения изгиба или напряжения сдвига. Он способен выдерживать до 2 различных сосредоточенных точечных нагрузок, 2 распределенных нагрузки и 2 момента. Распределенные нагрузки могут быть расположены так, чтобы они были равномерно распределенными нагрузками (UDL), треугольными распределенными нагрузками или трапециевидными распределенными нагрузками. Все нагрузки и моменты могут быть направленными как вверх, так и вниз по величине, что должно учитывать наиболее распространенные ситуации анализа балок.Расчет изгибающего момента и поперечной силы может занять до 10 секунд, и обратите внимание, что вы будете перенаправлены на новую страницу с реакциями, диаграммой поперечной силы и диаграммой изгибающего момента балки.
Одна из самых мощных функций — использование его в качестве калькулятора отклонения балки (или калькулятора смещения балки). Это можно использовать для наблюдения расчетного прогиба балки с опорой или консольной балки. Возможность добавлять формы сечения и материалы делает его полезным в качестве калькулятора деревянных балок или в качестве калькулятора стальных балок для проектирования балок lvl или i.На данный момент эта функция доступна в SkyCiv Beam, который имеет гораздо больше функций для проектирования деревянных, бетонных и стальных балок.
SkyCiv предлагает инженерам широкий спектр программного обеспечения для структурного анализа и проектирования облачных вычислений. Как постоянно развивающаяся технологическая компания, мы стремимся внедрять инновации и улучшать существующие рабочие процессы, чтобы сэкономить время инженеров в их рабочих процессах и проектах.
Калькулятор луча
Калькулятор прогиба балки
Этот калькулятор основан на теории пучков Эйлера-Бернулли.2) `
Калькулятор момента пучка и поперечной силы
Мы используем эти уравнения вместе с граничными условиями и нагрузками для наших балок, чтобы получить замкнутую форму
решения для конфигураций балок, показанных на этой странице (балки с простой опорой и консольные балки). В
Калькулятор балки использует эти уравнения для расчета изгибающего момента, поперечной силы, наклона и прогиба.
диаграммы.
Калькулятор балок — отличный инструмент для быстрой проверки сил в балках.Используйте это, чтобы помочь вам в дизайне
сталь, дерево
и бетонные балки при различных условиях нагружения. Также помните, что вы можете добавлять результаты из балок
все вместе
с использованием
метод
суперпозиция.
Калькулятор стальных, деревянных и бетонных балок
Конечно, не всегда возможно (или практически) получить решение в замкнутой форме для некоторой балки.
конфигурации.Если у вас стальная, деревянная или бетонная балка со сложными граничными условиями и нагрузками
вам лучше решить проблему численно с помощью одного из наших инструментов анализа методом конечных элементов. Если
ты не
беспокоясь о конструктивных кодах и сравнивая потребность в луче и его пропускную способность, попробуйте наши простые в использовании
Калькулятор сдвига и момента.
Если вам нужна полная проверка конструкции с помощью AISC 360, NDS, ASD и LRFD для конструкции стальных или деревянных балок
и вы хотите создать свой следующий луч за считанные минуты, вам может понравиться наш
Инструмент Beam Designer.
Стальная балка по стандарту AISC и деревянная балка NDS
Наша цель с WebStructural — вернуть инженерное сообщество, предоставляя бесплатные,
облачное приложение для проектирования стальных и деревянных балок. Нечего устанавливать, просто перейдите на наш
Бесплатный конструктор стальных и деревянных балок и приступайте к проектированию! Если вам нравится
инструмент
и решите, что хотите сохранить и распечатать проекты, которые можно обновить за 19 долларов.
ежемесячно.Нет долгосрочного контракта. Отмените в любой момент, мы сохраним ваши проекты, и вы сможете повторно подписаться позже
чтобы получить к ним доступ.
Другие бесплатные онлайн-калькуляторы
Мы создаем элегантное и мощное программное обеспечение для проектирования конструкций и расчета конструкций. Попробуйте некоторые из наших
другие бесплатные инструменты:
Калькулятор деревянных балок — пролеты балок, деревянные балки, клееные балки и балки для фальцевых балок
Для каких проектов подходят калькуляторы?
Калькуляторы предназначены для бытовых проектов.
Мне нужен разовый расчет, мне он подходит?
Да, просто оформите ежемесячную подписку и отмените ее, как только закончите.
Учитываются ли в калькуляторах стали европейские размеры сечения?
Да, калькулятор стальной балки Еврокода включает профили IPE и другие стандартные европейские размеры сечений. Он также включает разделы UB, UC и PFC. Недвижимость в британском разрезе предоставлена Tata Blue Book, европейская часть — ArcellorMittal Orange Book.
Могу ли я использовать стандартные / метрические единицы измерения США?
Во всех калькуляторах используются метрические единицы, кроме калькулятора США, в котором используются стандартные единицы измерения США.
В каком формате бывают отчеты?
Расчеты можно загрузить или отправить по электронной почте в виде файла PDF.
Что мне делать, если мне нужна нагрузка, которой нет в раскрывающемся списке?
Если вам нужно использовать нагрузку, которой нет в раскрывающемся меню, выберите «другое» внизу списка и введите сведения о нагрузке вручную.
Будут ли калькуляторы работать на моем ПК / Mac / планшете?
Да, калькуляторы работают в вашем браузере на любом устройстве, подключенном к Интернету, включая ПК, Mac и планшеты.
Насколько точны калькуляторы?
Мы сравниваем калькуляторы с множеством источников. К ним относятся примеры организаций по стандартизации, институтов, торговых организаций и учебники. Мы также сравниваем наши результаты с другими инженерными программами.
Мы используем автоматизированные модульные тесты и сквозные тесты для моделирования десятков или сотен примеров расчетов, охватывающих широкий спектр сценариев использования для каждого калькулятора.
Мы также используем наши основные вычислительные машины для воссоздания и сравнения наших результатов со стандартными отраслевыми таблицами (такими как Синяя книга, Оранжевая книга и таблицы пролетов древесины).
Наши калькуляторы обычно проходят недели или месяцы бета-тестирования и итераций и, наконец, аудит независимым дипломированным инженером-строителем перед выпуском.
Заявление об ограничении ответственности: Все программное обеспечение для инженерных разработок основано на приблизительных оценках и стандартах, которые могут быть открыты для интерпретации и могут изменяться.Вы должны использовать эти калькуляторы только в том случае, если у вас достаточно знаний, чтобы правильно оценить нагрузки, поддерживаемые элементами, обоснованность вывода программы, общую производительность конструкции и пригодность предлагаемой конструкции. Результаты следует проверять на себе, а все расчеты проверять самостоятельно.
Калькулятор отклонения балки
Этот калькулятор отклонения балки поможет вам определить максимальное отклонение балки для балок с простой опорой и консольных балок, несущих простых конфигураций нагрузки .Вы можете выбрать один из нескольких типов нагрузки, которые могут воздействовать на балку любой длины по вашему желанию. Величина и расположение этих нагрузок влияют на то, насколько балка изгибается. В этом калькуляторе отклонения балки вы узнаете о различных формулах отклонения балки , используемых для расчета отклонений балок с жесткой опорой и балок консольных балок. Вы также узнаете, как модуль упругости балки и момент инерции ее поперечного сечения влияют на расчетный максимальный прогиб балки.
Что такое прогиб балки и изгиб балки
В строительстве мы обычно используем каркасные конструкции , которые удерживаются фундаментом в земле. Эти каркасные конструкции подобны каркасам зданий, домов и даже мостов. В раме мы называем вертикальное обрамление колонн , а горизонтальные балки . Балки — это длинные элементы конструкции, которые несут нагрузки, создаваемые горизонтальными плитами конструкций, включая перекрытия и крыши.
Когда балки несут слишком тяжелые для них нагрузки, они начинают гнуться. Мы называем величину изгиба балки , прогиб балки . Отклонение балки — это вертикальное смещение точки вдоль центра тяжести балки. Мы также можем рассматривать поверхность балки как опорную точку, если нет изменений в высоте или глубине балки во время изгиба.
Как рассчитать максимальный прогиб балки
Мы снабдили наш калькулятор прогиба балки формулами, которые инженеры и студенты-инженеры используют для быстрого определения максимального прогиба, который будет испытывать конкретная балка из-за нагрузки, которую она несет.Однако эти формулы могут решать только простые нагрузки и их комбинацию. Мы составили для вас таблицы этих формул, как показано ниже:
Формулы прогиба балок с простой опорой
Формулы прогиба консольной балки
Метод наложения
Для расчета максимального прогиба балки с комбинацией нагрузок мы можем использовать метод наложения . Метод наложения утверждает, что мы можем приблизительно оценить полное отклонение балки, сложив вместе все отклонения, вызванные каждой конфигурацией нагрузки.Однако этот метод дает нам лишь приблизительное значение фактического максимального прогиба. Расчет сложных нагрузок потребует от нас использования так называемого метода двойного интегрирования .
Жесткость балки
Для расчета прогиба балки необходимо знать жесткости балки и величину силы или нагрузки, которые могут повлиять на изгиб балки. Мы можем определить жесткость балки, умножив модуль упругости балки , E , на ее момент инерции , I .Модуль упругости зависит от материала балки. Чем выше модуль упругости материала, тем больше прогиб может выдержать огромные нагрузки, прежде чем достигнет предела разрушения. Модуль упругости бетона составляет 15-50 ГПа (гигапаскалей), а у стали — около 200 ГПа и выше. Эта разница в значениях модуля упругости показывает, что бетон может выдерживать лишь небольшой прогиб и трескается быстрее, чем сталь.
Вы можете узнать больше о модуле упругости, воспользовавшись нашим калькулятором напряжений.С другой стороны, чтобы определить момент инерции для определенного поперечного сечения балки, вы можете воспользоваться нашим калькулятором момента инерции. Момент инерции представляет собой величину сопротивления материала вращательному движению. Момент инерции зависит от размеров поперечного сечения материала.
Момент инерции также зависит от оси вращения материала. Чтобы лучше понять эту концепцию, давайте рассмотрим поперечное сечение прямоугольной балки шириной 20 см и высотой 30 см.Используя формулы, которые вы также можете увидеть в нашем калькуляторе момента инерции, мы можем вычислить значения момента инерции этого поперечного сечения следующим образом:
Iₓ = ширина * высота³ / 12
= 20 * (30³) / 12
= 45000 см⁴
Iᵧ = высота * ширина³ / 12
= 30 * (20³) / 12
= 20,000 см⁴
Обратите внимание на два значения момента инерции. Это потому, что мы можем рассматривать изгиб балки по вертикали (по оси x, то есть Iₓ) или по горизонтали (по оси y, то есть Iᵧ).Поскольку мы учитываем отклонение балки при вертикальном изгибе, для наших расчетов всегда нужно использовать Iₓ . Полученные нами значения говорят нам о том, что балку труднее изгибать при вертикальной нагрузке и легче изгибать при горизонтальной нагрузке. Эта разница в значениях момента инерции является причиной того, что мы видим балки в этой конфигурации, в которой ее высота больше, чем ее ширина.
Понимание формул прогиба балки
Теперь, когда мы знаем концепции модуля упругости и момента инерции, теперь мы можем понять, почему эти переменные являются знаменателями в наших формулах отклонения балки.Формулы показывают, что чем жестче балка, тем меньше будет ее прогиб. Однако, изучив наши формулы, мы также можем сказать, что длина балки также напрямую влияет на прогиб балки. Чем длиннее балка, тем больше она может изгибаться и тем больше может быть прогиб.
Нагрузки, с другой стороны, влияют на отклонение балки двумя способами: направление отклонения и величина отклонения . Нисходящие нагрузки склонны отклонять балку вниз.Нагрузки могут быть в виде точечной нагрузки, линейного давления или моментной нагрузки. Формулы в этом калькуляторе ориентированы только на нисходящие или восходящие направления для точечной нагрузки и распределенных нагрузок. Распределенные нагрузки аналогичны давлению, но учитывают только длину балки, а не ширину балки. Формулы в этом калькуляторе также учитывают момент или крутящий момент нагрузки как по часовой стрелке, так и против часовой стрелки. Просто проконсультируйтесь по направлениям стрелок на соответствующем изображении формулы, чтобы выяснить, в каком направлении имеется положительное значение нагрузки.
Пример расчета прогиба балки
Для примера расчета прогиба балки рассмотрим простую деревянную скамью с ножками на расстоянии 1,5 метра друг от друга в их центрах. Допустим, у нас есть доска из восточной белой сосны толщиной 4 см и шириной 30 см, которая служит сиденьем для этой скамейки. Мы можем рассматривать это сиденье как балку, которая отклоняется, когда кто-то садится на скамейку. Зная размеры этого сиденья, мы можем затем вычислить его момент инерции, как в нашем примере выше.Поскольку нам нужно рассчитать Iₓ, его момент инерции будет:
Iₓ = ширина * высота³ / 12
= 30 * (4³) / 12
= 160,0 см⁴ или 1,6x10⁻⁶ м⁴
Сосна восточная белая имеет модуль упругости 6800 МПа (6,8x10⁹ Па)
, что является значением, которое мы получили из Справочника по древесине. Вы также можете легко получить значение модуля упругости для других материалов, таких как сталь и бетон, в Интернете или в местной библиотеке.Теперь, когда мы знаем эти значения, давайте рассмотрим нагрузку, которую будет нести этот стенд. Предположим, что ребенок 400 N
сидит в центре скамейки. Теперь мы можем рассчитать прогиб сиденья скамейки из-за точечной нагрузки в его центре:
δₘₐₓ = P * L³ / (48 * E * I)
δₘₐₓ = (400 Н) * (1,5 м) ³ / (48 * 6,8x10⁹ Па * 1,6x10⁻⁶ м⁴)
δₘₐₓ = 0,002585 m = 2,5850 мм
Это означает, что многоместное сиденье прогнется примерно на 2.6 миллиметров от исходного положения, когда ребенок сидит в центре скамейки.
Если вы нашли эту тему интересной и хотели бы узнать больше о прочности материалов, вам также может понравиться наш калькулятор запаса прочности. Вы также можете воспользоваться нашим конвертером силы, если хотите изучить различные единицы измерения точечных нагрузок и расчета сил.
Калькулятор балки — PolyBeam прост и удобен в использовании!
Простой в использовании калькулятор балки
Первое, что у наших пользователей ассоциируется с PolyBeam, — это простота.PolyBeam — это очень простой и интуитивно понятный калькулятор луча, который делает его очень простым в использовании, даже если вы не знакомы с ИТ и программным обеспечением. Опоры, нагрузки и свойства сечений вставляются с минимальным вмешательством пользователя. Одновременно PolyBeam построит графическое представление балки с приложенными нагрузками, вычислит поперечные силы и определит коэффициент использования балки.
Боковое продольное изгибание при кручении
Критический изгибающий момент от поперечного продольного изгиба при кручении определяется на основе энергетического метода, который учитывает высоту атаки нагрузки, поперечные силы и ограничения.С помощью этого метода с высокой точностью определяется критический момент. Это часто приводит к более высокой несущей способности по сравнению с традиционными расчетами.
Упругость и пластичность Поперечные силы
В отличие от традиционного программного обеспечения для проектирования, PolyBeam определяет поперечные силы как упруго, так и пластично. Это позволяет более эффективно использовать наиболее часто используемые стальные профили для статически неопределимых балок.
Расчет по предельным состояниям (ULS)
Можно указать комбинацию нагрузок ULS.Если это будет сделано, PolyBeam проверит поперечные силы из расчета балки с несущей способностью выбранного участка и определит коэффициент использования. Для получения дополнительных сведений о том, что входит в проверку конструкции ULS, см. Вопрос «Что включает проверка конструкции?».
Расчет предельного состояния эксплуатационной пригодности (SLS)
Можно указать два различных типа комбинаций нагрузок SLS: анализ собственной частоты или анализ прогиба. Анализ собственной частоты определяет первую собственную частоту балки и позволяет пользователю указать порог — это очень полезно при работе с требованиями к вибрации.аналогично можно указать порог отклонения, поскольку по умолчанию используется L / 400.
Противопожарное проектирование
Если указана комбинация пожарной нагрузки, PolyBeam рассчитывает температуру стали на основе продолжительности пожара и определяет несущую способность. Если секция не может выдержать нагрузку, можно определить критическую температуру стали и использовать ее для определения необходимой противопожарной изоляции.
Экспорт в PDF
Когда вы закончите расчет балки, ее очень легко задокументировать.Просто нажмите на экспорт, выберите, какой контент вы хотите включить, и позвольте PolyBeam создать для вас короткий и элегантный документ PDF. Эта функция — одна из самых популярных среди наших пользователей. См. Пример.
Пример расчета прочности деревянной балки
Деревянная балка AB пролетом 5 м, шириной 100 мм и высотой 200 мм должна выдерживать три сосредоточенные нагрузки, показанные на рисунке. Выбранный сорт древесины имеет следующие допустимые материалы; τ все = 1 МПа и σ все = 10
МПа.
Рассчитать максимальное напряжение сдвига и нормальные напряжения для выбранной древесины.
балка для данных условий нагружения.
Решение:
Шаг 1: Запишите входные параметры (включая свойства материала), которые
определено в образце примера.
СВОДКА ПО ВХОДНЫМ СВОЙСТВАМ | ||
Параметр | Значение | |
Ширина бруса [b] | 200 | мм |
Высота бруса [H] | 100 | мм |
Допустимое напряжение сдвига [τ все ] | 1 | МПа |
Допустимое нормальное напряжение [σ все ] | 10 | МПа |
Тип балки | Балка с простой опорой с множественными точечными нагрузками |
Шаг 2. Посетите страницу «Пример расчета простого поддерживаемого прогиба балки», чтобы
см. пример расчета на сдвиг
сила и изгибающие моменты.Рассчитать сдвиг
сил и изгибающих моментов с помощью калькулятора напряжения и прогиба простой опоры балки, как описано в примере.
Максимальные усилия сдвига и изгибающие моменты через деревянную балку приведены ниже.
СДВИГАТЕЛЬНЫЕ СИЛЫ И ИЗГИБНЫЕ МОМЕНТЫ | ||
Расстояние x | Сдвигающая сила (N) | Изгибающий момент (Нм) |
0.5 | 12676,5 | 6323 |
1,5 | 2500 | 8882 |
Шаг 3. Посетите страницу «Расчет прямоугольной балки на прочность», чтобы рассчитать максимальный сдвиг
и нормальные стрессы.
См. Пример расчета ниже для первой точки, указанной на шаге 2.
ВХОДНЫЕ ПАРАМЕТРЫ | ||
Параметр | Значение | |
Высота несущей балки [2c] | 200 | мм |
Ширина несущей балки [b] | 100 | |
Высота y [y] | 100 | |
Сила сдвига [В] | 12676. 4 | |
Нормальное напряжение в точке y [σ x ] | 9.484 | МПа |
Напряжение сдвига в точке y [τ xy ] | 0 | |
Напряжение фон Мизеса в точке y [σ v ] | 9,484 | |
Максимальное нормальное напряжение [σ макс ] | 9.484 | |
Максимальное напряжение сдвига [τ макс ] | 0,951 | |
Максимальное напряжение по Мизесу [σ v_max ] | 9,484 |
Шаг 4: Результаты расчета напряжений приведены в следующей таблице.
РЕЗУЛЬТАТЫ | ||||
Расстояние x | Сдвигающая сила (N) | Изгибающий момент (Нм) | Максимум.Нормальный Напряжение (МПа) | Максимум. Сдвиг Напряжение (МПа) |
0,5 | 12676,5 | 6323 | 9,484 | 0,951 |
1.5 | 2500 | 8882 | 13,323 | 0,188 |
Резюме
По результатам дизайн не
безопасен для заданных параметров и условий. Максимальное нормальное напряжение (13,323 МПа) превышает допустимое значение (10 МПа), указанное в задаче.Для надежной конструкции следует выбрать деревянную балку большего размера.
Проблема полностью решена с помощью калькуляторов и примеров, которые представлены в виде
следует.
Приложение для проектирования деревянных балок
от Construction Knowledge.net
«Очень просто использовать, если нужно убедиться, что кусок дерева
достаточно силен, чтобы вытащить что-нибудь из ямы ».
— Лия в Android Market
Простой в использовании калькулятор расчета деревянных балок для строительства и строительства:
Входные данные:
пролет, размер балки, тип пиломатериала и вариант точечной нагрузки или равномерно
распределенная нагрузка (включены только простые пролеты балки).
Выходы:
расчетное напряжение при изгибе, допустимое напряжение вашего типа балки и
расчетный и допустимый прогиб.
Другие функции и примечания:
Результаты можно отправить по электронной почте, отправить текстовое сообщение или скопировать в буфер обмена телефона.
Не стесняйтесь писать нам по электронной почте с предложениями функций или новыми идеями приложений.
Пример:
У вас есть бревна 6 x 6, перекрывающие верхнюю часть строительных лесов, и входящий в комплект
подъем с него.Вы хотите убедиться, что деревянная балка больше, чем
адекватный груз, который вы поднимаете. Вы знаете, что это желтый
сосна, имеет ширину 5 футов и пытается поднять 1500 фунтов груза (10 кубических футов
бетона). Было бы неплохо узнать, поддерживает ли расчет
что вам подсказывает ваша интуиция?
Вот как это работает:
1. Введите длину пролета: 5 футов
2. Введите предлагаемую ширину и глубину балки: 5.5 дюймов и 5,5 дюймов
3. Выберите породу дерева из вариантов: Сосна южная обработанная № 2 сорт
.
4. Укажите, будет ли нагрузка центром точечной нагрузки пролета или равномерной
распределенная нагрузка? Точечная нагрузка.
Пример точечной нагрузки — опора стойки на
балка или стальной трос, поднимающий ковш с приставкой. Точечные нагрузки находятся в
фунты. В примере на экранах ведро с 10 кубическими футами бетона.
должен быть поднят.Следовательно, нагрузка будет составлять 10 кубических футов бетона x 150 фунтов / кубический фут.
бетона = 1500 фунтов.
Равномерно распределенная нагрузка, с другой стороны, возникает, когда
силы, действующие на балку, распространяются по длине балки. Для
Например, деревянная балка на 16 дюймов по центру состоит из 16 дюймов фанеры и ковра.
(скажем, 2 фунта на квадратный фут) статической нагрузки над ним. Так что мертвый груз
становится 2 фунта / квадратный фут x 1,33 фута = 2,66 фунта на погонный фут. Жизнь
нагрузка (скажем, 40 фунтов на квадратный фут для жилого помещения) аналогичным образом будет 40 фунтов на квадратный фут x 1.33
фут = 53,2 фунта на погонный фут. Таким образом, полная нагрузка будет мертвой
нагрузка 2,66 фунта / фунт + динамическая нагрузка 53,2 фунта / фунт = 55,86 фунта / фунт.
5. Но вернемся к примеру: введите количество груза: 1500 фунтов
6. Убедитесь, что верхний пояс балки не скручен или
коробление.
Программа учитывает только изгибающие напряжения для простого пролета с
либо центральная точечная нагрузка, либо равномерно распределенная нагрузка.Программа
предполагает, что верхний пояс балки надлежащим образом поддерживается (либо с
регулярно расположенные балки или какие-либо стабилизирующие стяжки) по крайней мере
каждые пять футов. Если верхний пояс балки недостаточно
поддерживается, пожалуйста, поймите, что балка может выйти из строя из-за деформации верхнего пояса.