Расчет теплопроводности стены онлайн калькулятор: SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.

Содержание

Калькулятор расчета толщины стен онлайн




Данный калькулятор позволяет рассчитать ориентировочную толщину стен будущего дома. Для этого необходимо выбрать регион, где будет располагаться строение, температуру и материал, из которого будут изготовлены стены.

Онлайн калькулятор расчета толщины стен дома основан на СНиП II-3-79 «Строительная теплотехника» и СНиП 23-01-99 «Строительная климатология».

Район проживания:
Майкоп
АлейскБарнаулБеляБийскЗмеиного рскКатандаКош-АгачОнгудайРодиноРубцовскСлавгородТогул
АрхараБелогорскБлаговещенскБомнакБратолюбовкаВыссаГошДамбукиЕрофей ПавловичЗавитинскЗеяНорский складОрогонПоярковоСвободныйСковородиноСредняя НожкаТыган-УрканТындаУнахаУсть-НожкаЧерняевоШимановскЭкиман
АрхангельскБорковскаяЕмецкКой насМезеньОнега
АстраханьВерхний Баскунчак
БелорецкДуванМелеузУфаЯнаул
Белгород
Брянск
БабушкинБаргузинБагдаринКяхтаМондыНижнеангарскСосново-ОзерскоеУкаитУлан-УдэХоринск
ВладимирМуром
ВолгоградКотельниковоЭльтон
ВологдаВытеграНикольскТотьма
Воронеж
ДербентМахачкала
ИвановоКинешма
АлыгджерБодайбоБратскВерхняя ГутараДубровскоеЕрбогаченЖигаловоЗимаИкаИлимскИркутскИчераКиренскМамаМарковоНаканноНевонНепаОрлингаПеревозПреображенкаСлюдянкаТайшетТулунУсть-Ордынский — Бурятский АО
Нальчик
Калининград
Элиста
Калуга
Апука — Корякский ДОИча — Корякский АОКлючиКозыревскКорф — Корякский АОЛопатка, мысМильковоНачикио. БерингаОссора — Корякский АОПетропавловск-КамчатскийСемлячикиСоболевоКронокиУкаОктябрьскаяУсть-Воямполка — Корякский АОУсть-КамчатскУсть-Хайрюзово
Черкесск
КемьЛоухиОлонецПанадыПетрозаводскРеболы
КемеровоКиселевскКондомаМариинскТайгаТисульТопкиУстъ-Кабырза
ВяткаНагорскоеСовали
ВендингаВоркутаОбъячевоПетруньПечораСыктывкарТроицко-ПечорскУсть-УсаУсть-ЦильмаУсть-ЩугорУхта
КостромаЧухломаШарья
КраснодарСочиТихорецк
АгатаАчинскБайкит — Эвенкийский АОБоготолБогучаныВанавара — Эвенкийский АОВельмоВерхнеимбатскВолочанкаДиксон — Таймырский АОДудинка — Таймырский АОЕнисейскЕссей — Эвенкийский АОИгаркаКанскКежмаКлючиКрасноярскМинусинскТаимбаТроицкоеТура — Эвенкийский АОТуруханскХатанга — Таймырский АОЧелюскин, мыс — Таймырский АОЯрцево
Ай-ПетриКлепининоСимферопольФеодосияЯлта
Курган
Курск
Липецк
СвирицаТихвинСанкт-Петербург
АркагалаБроховоМагаданОмсукчанПалаткаСреднеканСусуман
Йошкар-Ола
Саранск
ДмитровКашираМосква
Вайда-ГубаКандалакшаКовдорКраснощельеЛовозероМончегорскМурманскНиванкюльПулозероПялицаТериберкаТерско-ОрловскийУмбаЮкспор
АрзамасВыксаНижний Новгород
Новгород
БарабинскБолотноеКарасукКочкиКупиноКыштовкаНовосибирскТатарскЧулым
Исиль-КульОмскТараЧерлак
Оренбург
Оренбург
ЗеметчиноПенза
БисерПермь
АнучиноАстраханкаБогопольВладивостокДальнереченскМельничноеПартизанскПосьетПреображениеРудная ПристаньЧугуевка
Великие ЛукиПсков
МиллеровоРостов-на-ДонуТаганрог
Рязань
Самара
ВерхотурьеЕкатеринбургИвдель
Саратов
Александровск-СахалинскийДолинскКировскоеКорсаковКурильскМакаровНевельскНогликиОхаПогибиПоронайскРыбновскХолмскЮжно-КурильскЮжно-Сахалинск
Владикавказ
ВязьмаСмоленск
АрзгирСтаврополь
Тамбов
БугульмаЕлабугаКазань
БежецкТверьРжев
АлександровскоеКолпашевоСредний ВасюганТомскУсть-Озерное
Кызыл
Тула
Березово — Ханты-Мансийский АОДемьянскоеКондинское — Ханты-Мансийский АОЛеушиМарресаляНадымОктябрьскоеСалехардСосьваСургут — Ханты-Мансийский АОТарко-Сале — Ямало-Ненецкий АОТобольскТюменьУгутУренгой — Ямало-Ненецкий АОХанты-Мансийск — Ханты-Мансийский АО
ГлазовИжевскСарапул
СурскоеУльяновск
АянБайдуковБикинБираБиробиджанВяземскийГвасюгиГроссевичиДе-КастриДжаорэЕкатерино-НикольскоеКомсомольск-на-АмуреНижнетамбовскоеНиколаевск-на-АмуреОблучьеОхотскИм. Полины ОсипенкоСизиманСоветская ГаваньСофийский ПриискСредний УргалТроицкоеХабаровскЧумиканЭнкэн
АбаканШира
Челябинск
Грозный
АгинскоеАкшаАлександровский ЗаводБорзяДарасунКалаканКрасный ЧикойМогочаНерчинскНерчинский ЗаводСредний КаларТунгокоченТупикЧараЧита
ПорецкоеЧебоксары
АнадырьМарковоОстровноеУсть-ОлойЭньмувеем
АлданАллах-ЮньАмгаБатамайБердигястяхБуягаВерхоянскВилюйскВитимВоронцовоДжалиндаДжарджанДжикимдаДружинаЕкючюЖиганскЗырянкаИситьИэмаКрест-ХальджайКюсюрЛенскНагорныйНераНюрбаНюяОймяконОлекминскОленекОхотский ПеревозСангарСаскылахСреднеколымскСунтарСуханаСюльдюкарСюрен-КюельТокоТоммотТомпоТуой-ХаяТяняУсть-МаяУсть-МильУсть-МомаЧульманЧурапчаШелагонцыЭйикЯкутск
ВарандейИндигаКанин НосКоткиноНарьян-МарХодоварихаХоседа-Хард
Ярославль


Комфортная температура в доме:


Материал стен:

ЖелезобетонБетон на гравии или щебне из природного камняКерамзитобетонГазо- и пенобетон, газо- и пеносиликат
Глиняный обыкновенный на цементно-песчаном раствореСиликатный на цементно-песчаном раствореКерамический пустотный на цементно-песчаном растворе
Сосна и ельДуб
Маты минераловатные прошивныеПлиты из стеклянного штапельного волокна
Медь (для сравнения)Стекло оконное

HEBEL D400HEBEL D500YTONG D400H+H D400H+H D500H+H D600КЗСМ D400КЗСМ D500КЗСМ D600EuroBlok D400EuroBlok D500EuroBlok D600ЭКО D400ЭКО D500ЭКО D600Bonolit D300Bonolit D400Bonolit D500Bonolit D600AeroStone D400AeroStone D500AeroStone D600AeroStone D700AeroStone D800ГРАС D400ГРАС D500ГРАС D600
BRAER Ceramic Thermo 14,3 NFBRAER Ceramic Thermo 12,4 NF BRAER BLOCK 44BRAER Ceramic Thermo 10,7 NFBRAER Ceramic Thermo 10,7 NF тип 2 BRAER BLOCK 25Porotherm 8Porotherm 12Porotherm 25Porotherm 38Porotherm 44Porotherm 51Porotherm 51 Premium
ISOVER ОптималROCKWOOL ЛАЙТ БАТТСROCKWOOL КАВИТИ БАТТСROCKWOOL РОКФАСАДKNAUF Insulation Термо Плита 037KNAUF Insulation Фасад Термо Плита 034KNAUF Insulation Фасад Термо Плита 032
ISOVER Классик Плюс


Рассчитать







Расчет теплопроводности стены — правила

Расчет теплопроводности стены

Каждый, кто строит дом или же собирается проводить ремонт, задается вопросом: какой толщины делать стены, какую теплоизоляцию и какой утеплитель лучше всего использовать.

Именно ответы на эти вопросы позволят сделать любой дом или квартиру уютными, комфортными и удобными для проживания.

Опять же, использование некачественных материалов и в недостаточных количествах, игнорирование утепления, как такового, могут привести к весьма печальным последствиям.

В таком доме просто будет сложно жить как в жару, так и в морозы. Температура в комнатах будет мало отличаться от температуры на улице.

Поэтому следует выяснить, какой же толщины должна быть теплоизоляция конкретно для вашего случая.

Как лучше поступить

На сегодняшний день это можно сделать самостоятельно: произвести необходимые расчеты, выяснить оптимальные материалы для работы и самостоятельно их установить.

Можно предпочесть работу заказу крупной фирме, которая сможет за отдельную плату совершить точный расчет, подобрать материалы и приступить к их монтажу.

Конечно, в случае, если вы все сделаете сами, претензии выдвигать будет некому.

В случае с фирмой, вы сможете пожаловаться на некачественную, недобросовестную работу или же когда требуемый эффект от произведенных работ не был достигнут.

Для расчет теплопроводности стены можно воспользоваться специальными программами, специализированными онлайн-калькуляторами, которые помогут вам получить нужные цифры.

Или же вы сможете это сделать самостоятельно. Многие заблуждаются, думая, что сами не в состоянии произвести расчеты, подсчитать, сколько теплоизоляции для работы будет необходимо на комнату, квартиру или же дом. Это сделать необычайно просто, ведь рассчитать толщину необходимой теплоизоляции можно довольно просто: на всех материалах производители указывают коэффициент теплопроводности.

Этикетка с коэффициентом

В чем необходимость расчета теплопроводности и монтажа теплоизоляции

Как уже говорилось, на это есть ряд причин:

  • отсутствие или недостаточность теплоизоляции приведет к промерзанию стен;
  • есть вероятность переноса так называемой точки росы, что, в свою очередь, вызовет появление конденсата на стенах, добавит излишнюю влажность в помещениях;
  • в жаркое время в помещениях будет хуже, чем под ярким солнцем на улице; в таких домах будет жарко, душно и неуютно.

Опять же, приведенные выше причины принесут вам и новые проблемы: та же влажность будет способствовать порче как используемых внутри помещения строительных материалов, так и мебели, техники. Это, в свою очередь, заставит вас тратить деньги на ремонт, обновление, приобретение новых вещей. Пример подобного можно с легкостью увидеть ниже.

Влага и роса в квартире

Так что теплоизоляция – это залог сохранности ваших денег в дальнейшем.

Как рассчитывать толщину теплоизоляции

Чтобы просчитать необходимую толщину, следует знать величину теплосопротивления, которая является постоянной, значение имеет разное, в зависимости от географического положения, то есть разное для каждого отдельно взятого района. За основу возьмем следующие показатели: теплосопротивление стен – 3.5м2*К/Вт, а потолка – 6м2*К/Вт. Первое значение назовем R1, а второе, соответственно, R2.

При расчетах стен или же потолка, или же пола, состоящих из более чем одного слоя, следует просчитать теплосопротивление каждого из них, а затем суммировать.

R= R+R1+R2 и т.д.

Соответственно, необходимая толщина теплоизоляции, ее слоя, будет получена путем следующих манипуляций и при помощи формул:

R=p/k, где pявляется толщиной слоя, а k – коэффициентом теплопроводности материала, который можно узнать у производителя.

Опять же, не забывайте, если есть несколько слоев, то по данной формуле следует просчитать каждый, и затем полученные результаты суммировать.

Пример таковых расчетов

Ничего сложного в этом процессе нет, можно с легкостью провести расчет для любого материала. В качестве примера мы можем взять расчет для дома из кирпича.

Скажем, толщина измеряемых стенок будет составлять 1.5 длины кирпича, а в качестве теплоизоляции решим использовать минвату.

Кирпич и минвата

Итак, нам требуется теплосопротивление стены не меньше 3.5. Для начала просчета нам потребуется узнать текущее тепловое сопротивление данной стены из кирпича.

Толщина составляет около 38 сантиметров, коэффициент теплопроводности составляет 0,56.

Соответственно, 0,38/0,56 = 0,68. Чтобы достигнуть показателя в 3.5, мы отнимем от него полученный результат (нам нужно 2,85 метр квадратный * К/Вт).

Теперь мы сделаем расчет толщины теплоизоляции, как уже говорилось выше, минеральной ваты: 2,85*0,045=0,128

Позволим себе немного округлить результат и получим следующее: при необходимости утеплить кирпичную стену, толщиной в полтора кирпича, нам потребуется толщина теплоизоляционного материала 130мм, при условии, что мы будем использовать минеральную вату. Если учитывать предстоящие внутренние и внешние работы, как отделочные, так и декоративные, можно позволить себе слой минваты в 100мм. Как видите, ничего сложного.

Что еще даст такой расчет

Используя такой расчет, вы сможете сравнивать различные типы утепления и теплоизоляции, сможете выбрать наиболее эффективный при наименьшем слое.

Если у вас проблема в пространстве, если же вы хотите сэкономить, то подобная работа позволит вам путем нехитрых манипуляций быстро выяснить, какой материал будет вам обходиться дешевле.

Если вы еще на этапе планировки дома, то сможете выяснить, что обойдется вам дешевле и менее трудоемко. Это может быть увеличение толщины кирпичной кладки, использование других типов теплоизоляционных материалов или же использование других строительных материалов для возведения стены, скажем, вместо кирпича использовать блоки и т.д.

Стена из блоков

Многие ленятся делать расчеты самостоятельно, в этом случае можно легко позволить себе воспользоваться калькуляторами, которые предлагаются в сети на многих страницах.

Здесь вы найдете массу шаблонов и заготовок, практически вся информация собрана в справочниках, вам нужно будет подставлять только тип строительных материалов, регион проживания и показатель толщины. В этом случае все вычисления будут происходить очень быстро и легко.

Онлайн калькулятор

Но в данном случае высока вероятность того, что на том или ином сайте жульничают: пытаются выставить материал, которым торгуют, в лучшем свете. В таком случае вероятна ошибка в расчетах, которая может дорого вам обойтись.

Не стоит бояться самостоятельных расчетов, для этого вам понадобятся только ручка, бумага и калькулятор.

Вы легко сможете в любой момент перепроверить свои расчеты или же показать их специалисту. Консультация со знакомым строителем выйдет гораздо дешевле, чем найм профессиональной компании.

Снова-таки, выбирая материалы, просчитывая необходимую толщину и цену на них, учитывайте и другие полезные свойства, которые вам могут быть интересны.

Например, пожаробезопасность, звукоизоляцию, водо- или влагонепроницаемость. Например, звукоизоляцией и теплоизоляцией обладает стекловата.

Стекловата

Да, к сожалению, такие материалы будут выходить несколько дороже, но все же, разница по цене в 10-20% с учетом того, что вы получите, скажем, не только теплоизоляцию, но еще и звукоизоляцию, стоит назвать хорошей покупкой и удачным решением.

Видео – расчет теплопроводности стены

На данном видео можно воочию увидеть, как производится расчет теплопроводности стены с помощью специализированной программы.

ᐉ Расчет толщины утеплителя для стен, кровли, пола онлайн

После завершающих работ по возведения жилого или коммерческого помещения наступает момент, когда актуален вопрос по утеплению стен. Благодаря развитию строительной сферы, в настоящее время существует огромный выбор теплоизоляции. И к каждому из видов строительного материала следует подходить с точностью и на профессиональном уровне, делать корректный расчет толщины утеплителя.

Главные показатели для выбора стройматериала:

  • толщина утеплителя;
  • тип утепления;
  • толщина стен;
  • материал, из которого построены стены.

Точность расчета толщины утеплителя

Используя эти показатели, очень важно правильно произвести расчет толщины утеплителя для стен, кровли и пола. Данный процесс должен иметь правильный расчет точки росы в толщине стен и утеплителя.

Этот параметр влияет на промерзание стен и теплоизоляцию дома, поэтому, ни в коем случае нельзя экономить на покупке утеплительной продукции.

При выборе нужно учитывать: показатели теплопроводности, толщину слоя. Благодаря этим данным необходимо точно рассчитать температурное сопротивление материала по формуле R=d/k.

Примечание: d ― толщина слоя, k ― теплопроводность.

Следует учесть, что данная формула используется исключительно для расчета толщины утеплителя в однослойной конструкции.

Параметр теплопроводности строительного материала можно найти в прилагаемой документации или интернете.

Вторым и наиболее важным показателем для правильного расчета толщины утеплителя является показатель внешних температур.

Расчет утеплителя для стен

При расчете следует пользоваться показателями:

  • толщина стены;
  • материал, использованный для возведения стен;
  • разница температур снаружи и внутри помещения.

Используя технические данные всех слоев и средних расчетов, коэффициент теплопередачи стен составляет 3.5. Как показывает практика, от толщины стен в помещении зависит толщина утеплителя. Как правило, расчет толщины утеплителя для стен вычисляется в обратно пропорциональном порядке. Поэтому, с меньшим коэффициентом теплосопротивления стен, слой теплоизоляции должен быть больше.

Расчет утеплительного материала для пола и кровли

Как показывает практика, для данных поверхностей следует использовать специальный утеплитель. От расчета толщины утеплителя кровли зависит нагрузка, которая будет идти на крышу. При неправильном подсчете очень просто утяжелить конструкцию.

Среднестатистические данные:

  1. Показатель теплоизоляции для крыши и чердачных перекрытий составляет 10-30 см.
  2. Подвальные помещения используют показатель от 6-15 см.

Прежде чем монтировать утепление для кровли, в обязательном порядке после возведения чердачного помещения следует использовать гидроизоляцию.

Благодаря ей все несущие стены и потолок будут защищены от проникновения грибка и плесени.

Онлайн калькулятор расчета толщины утеплителя

Стоит обратить внимание, что расчет толщины утеплителя для пола и теплоизоляции всего дома можно произвести самостоятельно, воспользовавшись онлайн сервисами для соответствующего расчета.

Преимущества калькулятора:

  1. В систему внесен полный список теплопроводности популярных стройматериалов.
  2. Подразумевают все виды утеплителей и максимальный список температур региона, где располагается ремонтируемый объект.
  3. Является индивидуальной программой, которая доступна для бесплатного использования на компьютерах и мобильных устройствах.
  4. Позволяет определить расходы на теплоизоляционный материал, рассчитать монтажно-техническую ведомость и указать точное количество утеплителя.

Свяжитесь с квалифицированными менеджерами компании по указанным номерам телефонов для получения индивидуального расчета!

Расчет теплопотерь дома: онлайн-калькулятор точного расчета теплопотерь

Комфортный климат в доме зависит от тепловых потерь. Чтобы не тратить лишние средства на отопление нужно учитывать многие факторы, такие как потеря тепла через стены во внешнюю среду, прогрев пола, материал и установка окон, исправность отопительной и вентиляционной системы и т.д.

Зачем нужен расчет теплопотерь дома?

Расчет теплопотерь дома – это учет всех составляющих, влияющих на потери тепла:

  1. Внешняя среда;
  2. Внутренняя составляющая.

Особенно актуально знать потери тепа в холодное время года. Решающим фактором здесь становится разность температур между внешней и внутренней средой. Потери тепла в зависимости от строительного материала необходимо рассчитать перед постройкой здания. Различные материалы характеризуются разной теплопроводностью. Дом, построенный из кирпича и бруса, по-разному задерживают тепло, и, соответственно для них требуется различный расход топлива на обогрев.

Очень большое влияние на сохранение тепла в помещении оказывает площадь. Недаром в Сибири бани строят маленькими, с низкими потолками.

Так же одним из факторов, влияющих на потерю тепла в помещении, является качественная теплоизоляция. Теплоизоляция, выполненная из некачественных материалов или посаженная на неправильный герметик (клей), будет только ухудшать ситуацию. В полостях такого материала может скапливаться вода. А, как известно, вода хорошо проводит тепло и не сохраняет его.

Общая потеря тепла складывается из всех составляющих:

Q=Qстен+Qокон+Qпола+Qкровли Qвытяжных систем

  • Рассчитать теплопотерю можно воспользовавшись он-лайн калькулятором. Здесь мы рассмотрим, как рассчитать теплопотери дома, учитывая основные факторы

Расчет теплопотерь дома

Влияние строительных материалов

По требованию СанПина максимальная разница между температурой воздуха и температурой стены должна быть 4°С. Этот показатель зависит от термического сопротивления материала.

Для каждого материала свой показатель термического сопротивления выраженный в °С м2/Вт:

  • Кирпичная кладка – 0,73
  • Брус – 0,83
  • Керамзитная плита – 0,58

Однако это не единственный показатель, влияющий на тепло в доме. Притом что, тепловое сопротивление дома из бруса почти такое же как у кирпичной кладки, он гораздо хуже сохраняет тепло. Связано это с тем, что между бревен находятся зазоры, которые необходимо прокладывать утеплителем. В кирпичной кладке все зазоры закрыты растворов цемента, который увеличивает термическую сопротивляемость почти вдвое. Керамзитная плита теряет тепло за счет швов. Поэтому дополнительные потери также должны быть учтены при подсчете тепловых потерь.

Теплопотери стен

Qcт=Kст*Fст(tвнут-tвнеш), где

  • Kст – коэффициент теплопроводности материала, °С м2/Вт;
  • Fст – площадь стены, м2;
  • tвнут – температура внутри помещения, °С;
  • tвнеш – температура снаружи, °С.

Стены дома непосредственно контактируют с внешней средой, поэтому при правильной постройке большая часть тепла будет уходить именно через них. Помимо материала на теплопотери за счет стен влияет внутренняя и наружная отделка, количество слоев стены и их теплопроводность, толщина стены. Слабыми местами в стеновых потерях являются потери на швы между панелями, различные технологические отверстия.

Для того чтобы сократить потери необходимо между слоями стены создать воздушную прослойку или прослойку, утепленную пористым утеплителем, так как воздух плохо проводит тепло и помогает сохранить его в помещении. Технологические отверстия также следует обкладывать утеплителем, для лучшего сохранения тепла.

Тепловые потери за счет крыши или потолка

Потери тепла для потолка и крыши рассчитываются по той же формуле, что и для стен. Теплый воздух поднимается вверх, поэтому, чтобы не отапливать улицу, следует серьезно отнестись к утеплению крыши при строительстве. Основным параметром теплопотерь здесь будет неравномерность стыков. От выбора утепляющего материала тоже будет завесить очень многое. Так, например использование эковаты предполагает отсутствие влаги. А, как известно, вместе с теплым воздухом вверх поднимается и пар, который остывая, будет конденсироваться, оседать на утеплителе, замещая воздух и снижать термическое сопротивление утеплителя.

Тепловые потери окон

Потери тепла за счет окон рассчитываются по следующей формуле:

Qок=Kок*Fок(tвнут-tвнеш), где

  • Kок – коэффициент теплопроводности материала, °С м2/Вт;
  • Fок – площадь стены, м2;
  • tвнут – температура внутри помещения, °С;
  • tвнеш – температура снаружи, °С

Так же как и у стен, снизить теплопотери окон можно за счет многослойности стекла. Также огромное влияние оказывают правильно установленные комплектующие и качественный утеплитель. Также большое влияние оказывает качество материалов, из которых изготовлено окно. Большая площадь окон также оказывает негативное влияние. Поэтому не стоит в регионах с холодными зимами устанавливать большие окна.

Утепление пола

Формула расчета для теплопотерь для пола и фундамента идентична представленной выше. Но есть и свои нюансы. Теплопроводность пола будет разной для фундамента поднятого над грунтом и стоящего непосредственно на грунте.

Для фундамента, поднятого над грунтом основным параметром, влияющим на потерю тепла, является высота подъема. Также в расчет принимаются все слои теплоизоляции между полом и неотаплиевым подполом. Необходимым условием сохранения тепла здесь является герметичность стыков и правильно подобранный утеплитель.

Фундамент, стоящий на грунте, имеет другие теплопотери. Его коэффициент рассчитывается исходя в основном из тепловых потерь слоев утеплителя и толщины пола. Также следует учесть, что в этом случае тепловые потери сокращаются от стен к центру здания.

Вентиляционные системы

Вентиляционные системы сами по себе предназначены для сообщения помещения с внешней средой. Однако при правильной установке они не только не сократят теплопотери, но и помогут сохранить тепло в доме. Основная задача вытяжки убрать лишний пар из помещения. Однако при большом захвате воздуха вентилятором могут происходить ощутимые теплопотери.

Чтобы их избежать следует выбирать вентиляторы с обратным клапаном. Лепестки клапана прикрывают вентиляционное отверстие, когда вентилятор не работает, и не позволяют теплу уходить в вентиляционной отверстие.

Система отопления

Еще одним моментом, влияющим на потерю тепла, является работа самой отопительной системы. Чтобы радиатор не отапливал улицу за ним стоит установить отражающий экран из специального материала.

Перед началом нового отопительного сезона нужно стравить воздух из системы, это поможет сохранить фитинги в нормальном рабочем состоянии. Так же необходимо несколько раз промыть систему, чтобы убрать возможные засоры.

Нормальная работа отопительной системы гарантирует комфортные температурные условия в помещении.

Таким образом, расчет теплопотерь помогает сократить расходы на отопление. Основными параметрами, влияющими на тепловые потери являются выбор изоляционных материалов, площадь помещения, разность температур между помещением и окружающей средой, наличие воздушных полостей, а также исправность отопительной и вентиляционной системы.

TermoCalc | Теплотехнический онлайн-калькулятор «Термокальк»

Город (td01)
Выбранный тип здания (td02)
Назначаемый региональный коэффициент m р (td03)
Зона влажности в которой находится населённый пункт (td04)
Жилая комната
Внутренняя температура помещения [t в] °С (td05)
Максимальная влажность помещения [ϕ в] % (td06)55
Влажностный режим помещения (td07)нормальный
Условия эксплуатации конструкций (td08)
Кухня
Внутренняя температура помещения [t в] °С (td09)
Максимальная влажность помещения [ϕ в] % (td10)60
Влажностный режим помещения (td11)нормальный
Условия эксплуатации конструкций (td12)
Туалет
Внутренняя температура помещения [t в] °С (td13)
Максимальная влажность помещения [ϕ в] % (td14)55
Влажностный режим помещения (td15)нормальный
Условия эксплуатации конструкций (td16)
Ванная или Совмещённый санузел
Внутренняя температура помещения [t в] °С (td17)
Максимальная влажность помещения [ϕ в] % (td18)65
Влажностный режим помещения (td19)мокрый
Условия эксплуатации конструкций (td20)
Помещения для отдыха и учебных занятий
Внутренняя температура помещения [t в] °С (td21)
Максимальная влажность помещения [ϕ в] % (td22)50
Влажностный режим помещения (td23)нормальный
Условия эксплуатации конструкций (td24)
Межквартирный коридор
Внутренняя температура помещения [t в] °С (td25)
Максимальная влажность помещения [ϕ в] % (td26)50
Влажностный режим помещения (td27)нормальный
Условия эксплуатации конструкций (td28)
Вестибюль, лестничная клетка
Внутренняя температура помещения [t в] °С (td29)
Максимальная влажность помещения [ϕ в] % (td30)50
Влажностный режим помещения (td31)нормальный
Условия эксплуатации конструкций (td32)
Кладовые
Внутренняя температура помещения [t в] °С (td33)
Максимальная влажность помещения [ϕ в] % (td34)50
Влажностный режим помещения (td35)нормальный
Условия эксплуатации конструкций (td36)
Прочие параметры
Наружная температура (наиболее холодной пятидневки обеспеченностью 0,92) [t н] °С (td37)
Средняя температура наружного воздуха, °С, отопительного периода [t от] °С (td38)
Количество суток отопительного периода [z от] суток (td39)
Средняя температура периода с среднемесячными отрицательными температурами [t н отр] °С (td40)
Количество суток периода со среднемесячными отрицательными температурами [z o] суток (td41)
Среднее парциальное давление наружного воздуха за период отрицательных температур [е н отр] Па (td42)
Среднее парциальное давления наружного воздуха за годовой период [е н] Па (td43)
ГСОП (градусо-сутки отопительного периода) [ГСОП] °С * сутки (td44)
Средняя наружная температура зимнего периода [t зима] °С (td45)
Количество месяцев зимнего периода [Z зима] суток (td46)
Среднее парциальное давление зимнего периода [е зима] Па (td47)
Средняя наружная температура весенне-осеннего периода [t весна-осень] °С (td48)
Количество месяцев весенне-осеннего периода [Z весна-осень] суток (td49)
Среднее парциальное давление весенне-осеннего периода [е весна-осень] Па (td50)
Средняя наружная температура летнего периода [t лето] °С (td51)
Количество месяцев летнего периода [Z лето] суток (td52)
Среднее парциальное давление летнего периода [е лето] Па (td53)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм стена] (м2 * °С) / Вт (td54)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче конструкций кровли (перекрытий) [R o норм кровля] (м2 * °С) / Вт (td55)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче конструкций полов [R o норм пол] (м2 * °С) / Вт (td56)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче оконных конструкций [R o норм окна] (м2 * °С) / Вт (td57)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче фонарей [R o норм фонари] (м2 * °С) / Вт (td58)
Понижающий коэффициент при превышении удельного расхода отопления стен (td59)
Понижающий коэффициент при превышении удельного расхода отопления окон (td60)
Понижающий коэффициент при превышении удельного расхода отопления прочее (td61)
ГСОП (градусо-сутки отопительного периода) [ГСОП] °С * сутки (Кухня) (td72)
ГСОП (градусо-сутки отопительного периода) [ГСОП] °С * сутки (Туалет) (td73)
ГСОП (градусо-сутки отопительного периода) [ГСОП] °С * сутки (Ванная или Совмещённый санузел) (td74)
ГСОП (градусо-сутки отопительного периода) [ГСОП] °С * сутки (Помещения для отдыха и учебных занятий) (td75)
ГСОП (градусо-сутки отопительного периода) [ГСОП] °С * сутки (Межквартирный коридор) (td76)
ГСОП (градусо-сутки отопительного периода) [ГСОП] °С * сутки (Вестибюль, лестничная клетка) (td77)
ГСОП (градусо-сутки отопительного периода) [ГСОП] °С * сутки (Кладовые) (td78)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм стена] (м2 * °С) / Вт (Кухня) (td82)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм стена] (м2 * °С) / Вт (Туалет) (td83)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм стена] (м2 * °С) / Вт (Ванная или Совмещённый санузел) (td84)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм стена] (м2 * °С) / Вт (Помещения для отдыха и учебных занятий) (td85)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм стена] (м2 * °С) / Вт (Межквартирный коридор) (td86)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм стена] (м2 * °С) / Вт (Вестибюль, лестничная клетка) (td87)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм стена] (м2 * °С) / Вт (Кладовые) (td88)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм кровля] (м2 * °С) / Вт (Кухня) (кровля)(td82_1)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм кровля] (м2 * °С) / Вт (Туалет) (кровля)(td83_1)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм кровля] (м2 * °С) / Вт (Ванная или Совмещённый санузел) (кровля)(td84_1)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм кровля] (м2 * °С) / Вт (Помещения для отдыха и учебных занятий) (кровля)(td85_1)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм кровля] (м2 * °С) / Вт (Межквартирный коридор) (кровля)(td86_1)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм кровля] (м2 * °С) / Вт (Вестибюль, лестничная клетка) (кровля)(td87_1)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм кровля] (м2 * °С) / Вт (Кладовые) (кровля)(td88_1)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм полов] (м2 * °С) / Вт (Кухня) (пол)(td82_2)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм полов] (м2 * °С) / Вт (Туалет) (пол)(td83_2)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм полов] (м2 * °С) / Вт (Ванная или Совмещённый санузел) (пол)(td84_2)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм полов] (м2 * °С) / Вт (Помещения для отдыха и учебных занятий) (пол)(td85_2)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм полов] (м2 * °С) / Вт (Межквартирный коридор) (пол)(td86_2)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм полов] (м2 * °С) / Вт (Вестибюль, лестничная клетка) (пол)(td87_2)
ТРЕБУЕМОЕ значение приведенного сопротивления теплопередаче стеновых конструкций [R o норм полов] (м2 * °С) / Вт (Кладовые) (пол)(td88_2)

Расчет утеплителя стен: формула толщины и плотности

Содержание статьи:

При строительстве дома любому человеку хочется, чтобы в его жилище было тепло. Достигается это разными способами: увеличение толщины стен, хорошее отопление или качественная теплоизоляция стен утеплителем. Нередко все три способа используются совместно, однако, как показала практика, монтаж утеплителя на стены снаружи дома помогает еще и существенно сэкономить на расходах на отоплении.

Расчет утеплителя с помощью калькулятора

Поддержание комфортной температуры воздуха особенно актуально в зимнее время и в странах с суровым климатом. Поэтому при возведении дома нужно грамотно подобрать утеплитель и провести расчет его толщины в зависимости от плотности материала.

Наиболее простой способ провести расчет толщины и плотности теплоизоляции – это воспользоваться одним из калькуляторов, которые в изобилии представлены в интернете на различных строительных сайтах.

Простой расчет толщины и плотности теплоизоляции для стен, кровли и пола может оказаться неэффективным в связи с особенностями разных стройматериалов и температурной спецификой каждого региона.

Пример онлайн калькулятора

Онлайн калькулятор способен учесть все нюансы и максимально точно провести расчет толщины теплоизоляции в зависимости от ее плотности и других сопутствующих факторов. Для этого достаточно набрать в строке поискового движка слова «расчет утеплителя онлайн калькулятор» и бесплатно воспользоваться одной из программ, предлагаемых строительными сайтами.

С помощью онлайн калькулятора можно не только рассчитать толщину теплоизоляции для стен, но и подобрать подходящую марку утеплителя и даже необходимое его количество. Кроме того, некоторые программы предлагают расчет финансовых затрат на утепление дома в том или ином регионе.

Расчет утеплителя с помощью формул

У каждого стройматериала, идет ли речь о бетоне, пеноблоке или кирпиче, свои показатели теплопроводности (способности материала проводить тепло). Производитель определяет этот показатель при лабораторных испытаниях и указывает на упаковке. Величиной обратной теплопроводности является теплосопротивление. Если материал хорошо проводит тепло, значит у него низкое теплосопротивление. Для термоизоляции стен подбираются утеплители с низкой теплопроводностью и соответственно высоким теплосопротивлением. Чтобы определить коэффициент теплосопротивления достаточно знать коэффициент теплопроводности и толщину утеплителя.

Узнать специфику тех или иных материалов можно из СНиП номер 2-3-79.

В этом документе требуется взять показатель ГСОП (что расшифровывается как градусы/сутки отопительного периода). Именно на нем основывается теплосопротивление. Важно знать, из каких материалов строится дом. Так как, если в основе стены лежат несколько слоев разных стройматериалов, то общий коэффициент теплопроводности рассчитывается как сумма всех слоев.

Для расчета толщины и плотности утеплителя используется СНиП под номером 3.03.01-87.

Там можно найти подробное описание, как проводится утепление жилых домов. Одно из неоспоримых правил – это монтаж теплоизоляции снаружи стен. Утепление изнутри является альтернативой лишь в том случае, когда работы снаружи невозможны (речь идет об отдельных квартирах в многоэтажных домах).

Пример самостоятельного расчета

Пример расчета

Чтобы правильно рассчитать необходимую плотность и толщину теплоизоляции, нужно принимать в расчет многие сторонние факторы, вроде характеристики ограждающих конструкций и климатической специфики региона. После этого подбирается подходящий материал и оптимальный способ утепления. Чтобы не нарушать технологию, весь дом лучше теплоизолировать материалом одной марки. Так как через участки трубопроводов, идущих с улицы в жилые помещения, теряется до 30% тепла, их тоже нужно утеплять в обязательном порядке.

Зная коэффициент теплосопротивления R, толщина теплоизоляции рассчитывается по простой формуле:

p = R * k

Где p является необходимой толщиной теплоизоляционного слоя, а k – теплопроводностью конкретного утеплителя.

При выборе таких популярных теплоизоляционных материалов, как пенополистирол и минвата, минимальная толщина утепляющего слоя должна быть не меньше 10 сантиметров. Даже если рассчитанное значение оказалось меньше этого числа, специалисты рекомендуют все же его придерживаться.

Наиболее востребованные способы теплоизоляции фасада

В зависимости от выбранного утеплителя и способа проведения монтажа, работы по утеплению поверхности стен можно подразделить на следующие группы:

  1. Моностена. Сегодня этот метод набирает популярность. Он предполагает обустройство стены из одного материала: кирпича или дерева. Из-за толщины стен в 40 сантиметров дополнительное утепление, как правило, не требуется;
  2. «Колодец». Этот тип утепления предполагает расположение утеплителя внутри стены, между внутренней и наружной панелью. Обычно такое утепление проводится на этапе возведения дома, и в таком случае оно не вызывает каких-либо затруднений. Если же теплоизоляцию нужно вложить в уже построенные стены, работы проводятся «в слепую» и требуют наличия специального оборудования, дающего возможность следить за процессом. Поэтому за такую работу принимаются только профессионалы;
  3. «Слоеный пирог». При этом варианте утеплитель монтируется на стены снаружи и покрывается отделочными материалами, вроде плитки, штукатурки, сайдинга или блокхауса. При выборе этой технологии утепления дома нужно уделить особое внимание защите от ветра, пара и влаги.

Возможные проблемы

Из-за неправильного выбора толщины утеплителя тоже могут возникнуть проблемы. Так, многие хозяева, планируя утепление жилища, считают, что чем толще будет утеплитель, тем лучше. Однако, как правило, увеличение толщины теплоизоляции не делает дом теплее, а вот деньги, уплаченные за лишний утеплитель, оказываются пустыми расходами.

Слишком толстый слой утеплителя не дает стенам «дышать», в результате происходит накопление влажных паров и образование конденсата, что разрушает стены дома и сам утеплитель, а также негативно сказывается на микроклимате в жилых помещениях.

Если слой утеплителя слишком маленький, то «точка росы» может сместиться вглубь стен. Что также связано с образование конденсата, промерзанием стен и их быстрым разрушением.

Итоги

Оптимальное утепление жилища зависит от многих факторов: климатических условий, стройматериалов, выбранной технологии утепления, а также от толщины утеплителя. Чтобы избежать досадных промахов, нужно в каждом отдельном случае считать необходимую толщину теплоизоляции для стен или кровли.

Можно произвести расчет самостоятельно, ознакомившись с различными документами и инструкциями. При желании и возможности, можно обратиться за помощью к специалистам. Осуществлять расчеты рекомендуется еще до того, как были куплены материалы. Поскольку в таком случае можно сравнить разные варианты теплоизоляции и выбрать наиболее подходящие для вас.

Впрочем, сегодня не обязательно самостоятельно проводить сложные расчеты по формулам, – достаточно воспользоваться специальными программами, в изобилии представленными на строительных сайтах. Они помогают рассчитать не только толщину и количество утеплителя, но и сколько денег вы сэкономите на отоплении, а также через какое время окупятся затраты на утепление дома.

Расчет материалов для утепления и отделки фасада дома планкеном

Зачем и как надо утеплять дом?

Наружные стены, окна, покрытие, т.е. ограждающие конструкции здания, защищают внутренние помещения от холода, ветра, дождя, снега. Специалисты называют их ограждающими конструкциями.

Благодаря способности ограждений препятствовать прохождению через них тепла в доме в холодное время года сохраняются условия теплового комфорта. Способность ограждений оказывать сопротивление потоку тепла, проходящему из помещения наружу, характеризуется сопротивлением теплопередачи R0:

R0=1/αB+R+1/αH,

где

αB — коэффициент теплоотдачи у внутренней поверхности ограждения, равный 8,7 Вт/м2°С;

αH,— коэффициент теплоотдачи у наружной поверхности ограждения, равный 23 Вт/м2°С;

R — термическое сопротивление конструкции, м2°С/Вт.

Чем выше сопротивление теплопередаче R0 конструкции, тем лучшими теплозащитными свойствами она обладает и тем меньше тепла через нее теряется.

Термическое сопротивление R конструкции зависит от толщины материала d и его коэффициента теплопроводности l.

Если конструкция выполнена из одного материала, т.е. является однослойной, то ее термическое сопротивление вычисляется по формуле:

R = d/l

Если конструкция многослойная, то ее термическое сопротивление будет складываться из термических сопротивлений отдельных слоев Ri:

R= ∑R = R1 + R2 + … + Rn

Коэффициент теплопроводности материала характеризует его теплозащитные свойства и показывает, какое количество тепла проходит через 1м2 материала толщиной 1м при разности температур на его поверхностях в 1°С.

Конструкции из материалов с низким значением коэффициента теплопроводности l обладают высоким сопротивлением теплопередаче R0, а значит, и высокими теплозащитными качествами.

Существуют нормы по теплопередаче ограждающих конструкций. Значения требуемого сопротивления стеновых конструкций для различных регионов России сведены представлены в таблице 1. Для примера желтым цветом выделен Северо-западный регион (Санкт-Петербург).

Таблица 1. Нормируемое сопротивление теплопередаче наружных стен из условия энергосбережения для регионов России

ГородаТребуемое сопротивление теплопередаче стеновых
конструкций Rо, (м2*град С)/Вт
R стены, жилыеR стены, общественныеR стены, производственные
Архангельск3,563,052,23
Астрахань2,642,261,71
Барнаул3,543,042,22
Владивосток3,042,611,94
Волгоград2,782,391,79
Воронеж2,982,561,91
Екатеринбург3,492,992,22
Ижевск3,392,92,14
Иркутск3,793,252,37
Казань3,32,832,08
Калининград2,682,291,73
Краснодар2,3421,54
Красноярск3,623,12,27
Магадан4,133,542,56
Москва3,132,681,99
Мурманск3,633,112,28
Нижний Новгород3,212,752,04
Новосибирск3,713,182,32
Оренбург3,262,792,06
Омск3,63,082,26
Пенза3,182,722,01
Пермь3,482,982,19
Петрозаводск3,342,862,11
Петропавловск-Камчатский3,072,631,95
Ростов-на-Дону2,632,261,7
Самара3,192,732,02
Санкт-Петербург3,082,641,96
Саратов3,072,631,95
Сургут4,093,512,54
Тверь3,152,72
Томск3,753,212,34
Тула3,072,631,95
Тюмень3,543,042,22
Уфа3,332,862,1
Хабаровск3,563,052,24
Ханты-Мансийск3,923,362,44
Чебоксары3,292,822,08
Челябинск3,422,932,16
Чита4,063,482,52
Южно-Сахалинск3,362,882,12
Якутск5,044,323,08
Ярославль3,262,792,06

Варианты исполнения несущих стен представлены в таблице 2. Желтым цветом обозначены варианты, удовлетворяющие требованиям по теплопередаче стеновых конструкций для Северо-Западного региона.

Таблица 2. Варианты исполнения несущих конструкций здания и их утепления для реализации требований по энергосбережению

Плотность материала
несущей стены, кг/м3
Толщина несущей
стены, мм
Сопротивление теплопередаче конструкции (м2*К/Вт),
для условий А/Б
Без утеплителяТолщина утеплителя, мм
50100150200
железобетон
25002000,101,452,643,835,02
0,091,372,483,594,7
2500,131,482,673,865,05
0,121,392,53,614,72
3000,161,582,73,895,08
0,151,422,533,644,75
кирпич обыкновенный
18002500,361,712,94,095,28
0,311,582,693,84,91
3800,541,893,084,275,46
0,471,742,853,965,07
5100,732,083,274,465,65
0,631,93,014,125,23
кирпич силикатный
18002500,331,682,874,065,25
0,291,562,673,784,89
3800,501,853,044,235,42
0,441,712,823,935,04
5100,672,023,214,45,59
0,591,862,974,085,19
кирпич керамический пустотелый
14002500,481,833,024,215,4
0,431,72,813,925,03
3800,732,083,274,465,65
0,661,923,044,155,25
5100,982,333,524,715,9
0,882,153,264,375,48
газобетон и пенобетон
6002000,912,263,454,645,83
0,772,043,154,265,37
3001,362,713,95,096,28
1,152,423,534,655,76
6002,734,085,276,467,65
2,313,584,695,86,91
каркасный дом
  01,52,693,885,07
01,422,533,644,75

Анализ таблицы 2 показывает, что:

  1. Для обеспечения комфортного сосуществования дом необходимо строить с учетом современных требований по теплофизике.
  2. Толщина утеплителя является наиболее важным фактором в обеспечении требований к теплофизике стен.
  3. Наиболее качественным решением строительства энергоэффективного дома является каркасный дом.

Что такое теплопроводность? Обзор

Вариация теплопроводности

Теплопроводность конкретного материала сильно зависит от ряда факторов. К ним относятся температурный градиент, свойства материала и длина пути, по которому следует тепло.

Теплопроводность окружающих нас материалов существенно различается: от материалов с низкой проводимостью, таких как воздух со значением 0,024 Вт / м • К при 0 ° C, до металлов с высокой проводимостью, таких как медь (385 Вт / м • К).

Теплопроводность материалов определяет то, как мы их используем, например, материалы с низкой теплопроводностью отлично подходят для изоляции наших домов и предприятий, в то время как материалы с высокой теплопроводностью идеально подходят для приложений, где необходимо быстро и эффективно отводить тепло из одной области. к другому, как в кухонных принадлежностях и системах охлаждения в электронных устройствах. Выбирая материалы с теплопроводностью, подходящей для области применения, мы можем достичь наилучших возможных характеристик.

Теплопроводность и температура

Из-за того, что движение молекул является основой теплопроводности, температура материала имеет большое влияние на теплопроводность. Молекулы будут двигаться быстрее при более высоких температурах, и поэтому тепло будет передаваться через материал с большей скоростью. Это означает, что теплопроводность одного и того же образца может резко измениться при повышении или понижении температуры.

Способность понимать влияние температуры на теплопроводность имеет решающее значение для обеспечения ожидаемого поведения продуктов при воздействии термического напряжения. Это особенно важно при работе с продуктами, выделяющими тепло, например электроникой, и при разработке материалов для защиты от огня и тепла.

Теплопроводность и структура

Значения теплопроводности существенно различаются в зависимости от материала и сильно зависят от структуры каждого конкретного материала.Некоторые материалы будут иметь разные значения теплопроводности в зависимости от направления распространения тепла; это анизотропные материалы. В этих случаях тепло легче перемещается в определенном направлении из-за того, как устроена конструкция.

При обсуждении тенденций теплопроводности материалы можно разделить на три категории; газы, неметаллические твердые тела и металлические твердые тела. Различия в способностях этих трех категорий к теплопередаче можно объяснить различиями в их структурах и молекулярных движениях.

Газы имеют более низкую относительную теплопроводность, поскольку их молекулы не так плотно упакованы, как в твердых телах, и поэтому теплопередача сильно зависит от свободного движения молекул и скорости молекул.

Газы — плохой теплопередатчик. Напротив, молекулы в неметаллических твердых телах связаны в сетку решетки, и поэтому теплопроводность в основном происходит за счет колебаний в этих решетках. Непосредственная близость этих молекул по сравнению с молекулами газов означает, что неметаллические твердые тела имеют более высокую теплопроводность по сравнению с двумя, однако внутри этой группы есть большие различия.

Это изменение частично объясняется количеством воздуха, присутствующего в твердом теле, материалы с большим количеством воздушных карманов являются отличными изоляторами, тогда как те, которые более плотно упакованы, будут иметь более высокое значение теплопроводности.

Теплопроводность металлических твердых тел еще раз отличается от предыдущих примеров. Металлы обладают самой высокой теплопроводностью среди любых материалов, за исключением графена, и обладают уникальной комбинацией теплопроводности и электропроводности.Оба эти атрибута передаются одними и теми же молекулами, и связь между ними объясняется законом Видемана-Франца. Этот закон свидетельствует о том, что при определенной температуре электропроводность будет пропорциональна теплопроводности, однако по мере увеличения температуры теплопроводность материала будет расти, а электропроводность — уменьшаться.

Тестирование и измерение теплопроводности

Теплопроводность — важнейший компонент взаимоотношений между материалами, и способность понимать это позволяет нам добиться наилучших характеристик материалов, которые мы используем во всех аспектах нашей жизни.Эффективное испытание и измерение теплопроводности имеют решающее значение для этих усилий. Методы измерения теплопроводности можно разделить на установившиеся или переходные. Это разграничение является определяющей характеристикой того, как работает каждый метод. Методы установившегося состояния требуют, чтобы образец и образец сравнения находились в тепловом равновесии до начала измерений. Для переходных методов это правило не требуется, поэтому результаты выдаются быстрее.

Исследования

Получение пористой муллитовой керамики с низкой теплопроводностью

В этом исследовании анализируется муллитовая керамика, образованная в результате вспенивания и отверждения крахмала муллитового порошка, а также то, как ее теплопроводность изменяется в зависимости от пористости керамики.Теплопроводность измерялась методом источника переходной плоскости Hot Disc (TPS) с TPS 2500 S. По мере увеличения пористости муллитовой керамики увеличивается и теплопроводность.

Материал с фазовым переходом нанографит / парафин с высокой теплопроводностью

Композиты нанографит (NG) / парафин были приготовлены в качестве композитных материалов с фазовым переходом. Добавление NG увеличило теплопроводность композитного материала. Материал, содержащий 10% НГ, имел теплопроводность 0.9362 Вт / м • K

Артикул:

Нейв Р. Гиперфизика. «Теплопроводность». Государственный университет Джорджии.
Доступно по адресу: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html#c1

Материалы курса по неразрушающему контролю. «Теплопроводность». Ресурсный центр по неразрушающему контролю.
Доступно по адресу: https://www.ndeed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/ThermalConductivity.htm

Уильямс, М. «Что такое теплопроводность?». Phys.Org. 9 декабря 2014 г.
Доступно по адресу: http://phys.org/news/2014-12-what-is-heat-conduction.html

Что вы подразумеваете под теплопроводностью? Получено из определения теплопроводности

Thermtest База данных термических свойств материалов. Список значений теплопроводности

Кондуктивная теплопередача

Проводимость как теплопередача имеет место при наличии градиента температуры в твердой или неподвижной текучей среде.

При столкновении соседних молекул энергия проводимости передается от более энергичных молекул к менее энергичным.Тепло течет в направлении понижения температуры, поскольку более высокие температуры связаны с более высокой молекулярной энергией.

Кондуктивная теплопередача может быть выражена с помощью «закона Фурье »

q = (к / с) A dT

= UA dT (1)

где

q = теплопередача (Вт, Дж / с, БТЕ / час)

k = Теплопроводность материала (Вт / м · К или Вт / м o C, БТЕ / (час o F ft 2 / фут)

s = толщина материала (м, фут)

A = площадь теплопередачи (м 2 , фут 2 )

U = к / с

= Коэффициент теплопередачи (Вт / (м 2 K), Btu / (фут 2 ч o F)

dT = t 1 — t 2

= температурный градиент — разница — по материалу ( o C, o F) 90 054

Пример — кондуктивный теплообмен

Плоская стенка изготовлена ​​из твердого железа с теплопроводностью 70 Вт / м o C. Толщина стены 50 мм , длина и ширина поверхности 1 м на 1 м. Температура составляет 150 o C с одной стороны поверхности и 80 o C с другой.

Можно рассчитать кондуктивную теплопередачу через стену

q = [(70 Вт / м o C) / (0,05 м) ] [(1 м) (1 м)] [ (150 o C) — (80 o C)]

= 98000 (Вт)

= 98 (кВт)

Калькулятор теплопроводности.

Этот калькулятор можно использовать для расчета теплопроводности и теплопередачи через стену. Калькулятор является универсальным и может использоваться как для метрических, так и для британских единиц измерения, если они используются последовательно.

k — теплопроводность (Вт / (мК), БТЕ / (час o F ft 2 / фут))

A — площадь 2 , футы 2 )

t 1 — температура 1 ( o C, o F)

t 2 — температура 2 ( o C, o F)

s — толщина материала (м, фут)

Проводящая теплопередача через плоскую поверхность или стену со слоями из серии

Тепло, передаваемое через стену со слоями в тепловой контакт можно рассчитать как

q = dT A / ((s 1 / k 1 ) + (s 2 / k 2 ) +… + (s n / k n )) (2)

где

dT = t 1 9014 9014 9014

= разница температур между внутренней и внешней стеной ( o C, o F)

Обратите внимание, что термостойкость из-за поверхностной конвекции и излучения не включается в это уравнение .Конвекция и излучение в целом имеют большое влияние на общие коэффициенты теплопередачи.

Пример — кондуктивный теплообмен через стенку печи

Стенка печи 1 м 2 состоит из внутреннего слоя нержавеющей стали толщиной 1,2 см и , покрытого наружным изоляционным слоем изоляционной плиты 5 см . Температура внутренней поверхности стали составляет 800 K , а температура внешней поверхности изоляционной плиты составляет 350 K .Теплопроводность нержавеющей стали составляет 19 Вт / (м · К) , а теплопроводность изоляционной плиты составляет 0,7 Вт / (м · К) .

Кондуктивный перенос тепла через многослойную стену можно рассчитать как

q = [(800 K) — (350 K)] (1 м 2 ) / ([(0,012 м) / (19 Вт / (м · К) )] + [(0,05 м) / (0,7 Вт / (м · К))] )

= 6245 (Ш)

= 6.25 кВт

Единицы теплопроводности

  • Btu / (h ft 2 o F / ft)
  • Btu / (h ft 2 o F / дюйм) 904 БТЕ / (с фут 2 o фут / фут)
  • Британские тепловые единицы дюйм) / (фут² ч ° F)
  • МВт / (м 2 К / м)
  • кВт / (м 2 К / м)
  • Вт / (м 2 К / м)
  • Вт / (м 2 К / см)
  • Вт / ( см 2 o C / см)
  • Вт / (дюйм 2 o F / дюйм)
  • кДж / (hm 2 K / м)
  • J / (см 2 o C / м)
  • ккал / (hm 2 o C / м)
  • кал / (с cm 2 o C / см)
  • 1 Вт / (м · К) = 1 Вт / (м 90 · 104 o 90 · 105 C) = 0.85984 ккал / (hm o C) = 0,5779 BTU / (ft h o F) = 0,048 Btu / (дюйм h o F) = 6,935 (BTu дюймов) / (фут² час ° F)

Уравнения и калькулятор теплопроводности стен | Инженеры Edge

Связанные ресурсы: теплопередача

Уравнения и калькулятор теплопроводности стен

Теплообменная техника
Термодинамика
Инженерная физика

Теплопроводность через уравнения стены и калькулятор.

ВСЕ калькуляторы требуют членства Premium

Предварительный просмотр: Калькулятор теплопроводности через стену

Изменение теплопроводности материала при изменении температуры в интересующем температурном диапазоне часто может быть аппроксимировано линейной функцией и выражено как:

Где:

k (T) = изменение теплопроводности (Вт / м • K)
β = Температурный коэффициент теплопроводности (K -1 )
k o = теплопроводность (Вт / м • K)
T = Температура (K)

Средняя теплопроводность

Пример теплопроводности через стену с k (T)

высотой 2 м и 0.Бронзовая пластина шириной 7 м, толщина 0,1 м. На одной стороне пластины поддерживается постоянная температура 600 K, а на другой стороне — 400 K. Можно предположить, что теплопроводность бронзовой пластины линейно изменяется в этом диапазоне температур, как k (T) = k o. (1 βT,), где k o = 38 Вт / м · K и β 9,21 10 -4 K -1 . Пренебрегая краевыми эффектами и предполагая устойчивую одномерную теплопередачу, определите скорость теплопроводности через пластину.

Допущения:

1 Теплопередача задается устойчивой и одномерной.
2 Теплопроводность изменяется линейно.
3 Нет тепловыделения.

следовательно

Тогда коэффициент теплопроводности:

Где:
A = Площадь (м 2 ) = В x Ш
L = Толщина (м)

© Copyright 2000-2021, ООО «Инжиниринг Эдж» www.Engineersedge.com
Все права защищены
Отказ от ответственности

| Обратная связь | Реклама
| Контакты

Дата / Время:

Передача тепла посредством теплопроводности: уравнения и примеры — стенограмма видео и урока

Примеры поведения

В нашей повседневной жизни есть всевозможные примеры поведения. Главное — подумать о том, соприкасаются ли предметы физически. Таким образом, кастрюля с кипящей водой, нагреваемая электрической плитой, получает тепловую энергию от плиты посредством теплопроводности.И когда вы дотрагиваетесь до металлического противня в духовке и обжигаетесь, это тоже происходит из-за кондукции.

Уравнение проводимости

В физике все должно иметь уравнение! Это какое-то неписаное правило. Проведение — не исключение. Насколько быстро происходит проводимость, зависит от нескольких факторов: из какого материала сделаны объекты (проводимости), площади поверхности двух соприкасающихся объектов, разницы температур между двумя объектами и толщины двух объектов.

В форме уравнения это выглядит так.

Q свыше т — это скорость теплопередачи — количество тепла, передаваемого за секунду, измеряемое в Джоулях в секунду или ваттах. k — это теплопроводность материала. Например, медь имеет теплопроводность 390, а шерсть — всего 0,04. T1 — это температура одного объекта, а T2 — температура другого.Поскольку это разница температур, вы можете использовать градусы Цельсия или Кельвина, в зависимости от того, что вам удобнее. А d — это толщина интересующего нас материала.

Таким образом, скорость передачи тепла к объекту равна теплопроводности материала, из которого он сделан, умноженному на площадь соприкасающейся поверхности. умножается на разницу температур между двумя объектами, деленную на толщину материала.

Пример расчета

Хорошо, давайте рассмотрим пример.Допустим, вы собираетесь в аквапарк и собираетесь взять с собой охладитель пенополистирола. Кулер имеет общую площадь 1,2 квадратных метра, толщину стенок 0,03 метра. Температура внутри кулера — 0 по Цельсию, а в самое жаркое время дня 38 градусов по Цельсию. Сколько тепловой энергии в секунду теряет кулер в это время суток? А сколько тепловой энергии теряется в аквапарке за три часа при температуре 38 градусов? (Примечание: теплопроводность пенополистирола равна 0.01.)

Все, что нам нужно сделать, чтобы решить эту проблему, — это подставить числа в уравнение. Потери тепловой энергии в секунду ( Q / t ) равны теплопроводности пенополистирола ( k ), умноженной на площадь поверхности охладителя ( A ), умноженную на разницу температур между охладитель и внешний вид ( T2 T1 ), разделенные на толщину пенополистирола. Это 0,01, умноженное на 1,2, умноженное на 38, разделенное на 0.03. Введите все это в калькулятор, и вы получите 15,2 Джоулей в секунду или 15,2 Вт.

Q / t = ((0,01) (1,2) (38-0)) / 0,03 = 15,2 Дж / с или 15,2 Вт

Для второй части вопроса нам нужно выяснить, сколько энергия теряется за три часа. Что ж, у нас есть потери энергии за секунду — 15,2 Джоулей. Итак, нам просто нужно знать, сколько секунд осталось в трех часах. Три часа, умноженные на 60 минут, умноженные на 60 секунд, в сумме дают 10800 секунд.15,2 джоулей в секунду в течение 10 800 секунд … умножьте два числа вместе, и вы получите в общей сложности 164 160 джоулей за три часа.

И все — готово.

Краткое содержание урока

Проводимость — это передача тепловой энергии между двумя объектами, находящимися в прямом физическом контакте. Это один из трех типов теплопередачи, два других — конвекция и излучение. Когда два объекта с разной температурой соприкасаются друг с другом, между ними будет проходить тепловая энергия.Чтобы понять это, мы должны понять, что температура — это средняя кинетическая энергия молекул в веществе. Более горячие материалы содержат молекулы, которые движутся быстрее. Поэтому, когда холодный объект соприкасается с горячим объектом, быстро движущиеся горячие молекулы сталкиваются с более холодными молекулами, распространяя тепло от горячего объекта на холодный объект. Это будет продолжаться до тех пор, пока они не достигнут одинаковой температуры.

Некоторые материалы являются лучшими проводниками, чем другие. Вот почему кафельные полы кажутся такими холодными.Ваши ноги почти всегда теплее пола, но кафельный пол лучше проводит тепло. То, что ваша кожа ощущается как «холодная», — это просто передача тепла от ваших ног к полу, и это происходит намного быстрее с плиточным полом, чем с ковром, хотя обычно они имеют одинаковую температуру.

Уравнение проводимости говорит нам, что скорость теплопередачи ( Q / t ) в Джоулях в секунду или ваттах равна теплопроводности материала ( k ), умноженной на площадь поверхности. соприкасающихся объектов ( A ), умноженное на разницу температур между двумя материалами ( T2 T1 ), разделенную на толщину интересующего нас материала ( d ).Вы можете использовать это, чтобы найти скорость теплопередачи, но если вам дан определенный период времени ( t ), вы также можете рассчитать общее количество переданного тепла.

Электроэнергия происходит повсюду вокруг нас: когда вы обжигаетесь на горячем противне, когда вы нагреваете кастрюлю на электрической плите, когда у вас установлена ​​внутренняя изоляция стен. Всякий раз, когда тепло передается между двумя предметами, которые соприкасаются напрямую, это происходит из-за теплопроводности.

Результаты обучения

После того, как вы завершите этот урок, вы должны иметь возможность:

  • Определить проведение и выявить повседневные примеры этого
  • Объясните, как происходит проводимость, и какие факторы влияют на ее скорость
  • Вспомните уравнение проводимости

Коэффициент теплопередачи

— калькулятор.org

Что такое коэффициент теплопередачи?

В химии и машиностроении коэффициент теплопередачи используется для расчета теплопередачи между жидкостью и твердым телом, между жидкостями, разделенными твердым телом, или между двумя твердыми телами, и является обратной величиной теплоизоляции . Коэффициент теплопередачи выражается в единицах СИ Вт / (м 90 · 104 2 90 · 105 K) и рассчитывается следующим образом:

ч = ∆Q / (A * ∆T * ∆t)

где h — коэффициент теплопередачи, ∆Q — подвод тепла в систему или потери тепла, A — площадь поверхности, на которой передается тепло, ∆T — разница температур между продаваемой поверхностью и окружающей средой, и ∆t — изменение во времени, включающее период времени, в котором произошла теплопередача.

В зависимости от способа передачи тепла коэффициент теплопередачи рассчитывается различными способами. Большинство твердых веществ обладают известной теплопроводностью, которая может использоваться в качестве основы для расчета коэффициента теплопередачи. Очень распространенной инженерной проблемой является передача тепла между жидкостью и твердой поверхностью. Наиболее распространенный способ решения этой проблемы — разделение теплопроводности конвекционной жидкости на размерную шкалу. Также принято вычислять коэффициент с числом Нуссельта (одна из множества безразмерных групп, используемых в гидродинамике).

В условиях принудительной конвекции (тип теплопередачи, при котором движение жидкости создается внешним источником, а не просто плавучестью нагретой жидкости), можно определить коэффициент теплопередачи с помощью корреляции Диттуса-Боелтера. Это может быть полезно при разработке теплообменников, которые представляют собой устройства, предназначенные для передачи тепла от одной среды к другой в коммерческих целях. Одним из примеров теплообменника является радиатор в вашем автомобиле, но есть и многие другие.Теплообменники используются в холодильном оборудовании, кондиционировании воздуха, химических заводах и обогреве помещений, и это лишь некоторые из них. Хотя корреляция Диттуса-Боелтера не совсем точна, она полезна для некоторых приложений и, по оценкам, имеет точность в пределах 15 процентов. Используя корреляцию Диттуса-Боелтера, коэффициент теплопередачи можно рассчитать следующим образом, используя две дополнительные безразмерные группы, число Рейнольдса и число Прандтля:

h = (k w / D H ) * Nu

, где k w — теплопроводность жидкости, D H — гидравлический диаметр, а Nu — число Нуссельта, которое определяется по следующему уравнению:

Nu = 0.023 * Re 0,8 * Pr n

В этом уравнении Re — это число Рейнольдса, равное:

Re = (м * D H ) / (мк * A)

А Pr — это число Прандтля, равное:

.

Pr = (C p * μ) / k w

Для числа Рейнольдса m равно массовому расходу, а A — площадь поперечного сечения потока, взятого из трубки. Для числа Прандтля C p равно теплоемкости (при условии постоянного давления), и в обоих уравнениях μ — это вязкость рассматриваемой жидкости.Число Рейнольдса является мерой относительной важности вязких и инерционных сил (которые вызывают турбулентность). Когда у нас есть все эти факторы, мы можем получить достойную оценку скорости теплопередачи через конкретный тип теплообменника, который мы планируем спроектировать.

Уравнение для скорости теплопередачи Q записывается следующим образом:

Q = 1 / ((1 / ч) + (т / к)) A ΔT

где t — толщина стенки, через которую передается тепло, A — площадь передачи, а k — теплопроводность среды.

Теплообменники во многом схожи с электрическими цепями. Тепловой поток аддитивен по параллельным «цепям» и обратно аддитивен по последовательным процессам теплообмена. Так же работает и коэффициент теплопередачи. Для параллельно включенных процессов теплообмена общее значение h равно:

h = h 1 + h 2 + h 3 + … + h n

, где каждый подпроцесс имеет свой коэффициент теплопередачи.Для последовательно соединенных процессов теплопередачи уравнение записывается как:

ч = 1 / ч 1 + 1 / ч 2 + 1 / ч 3 + … + 1 / ч n

Добавьте эту страницу в закладки в своем браузере, используя Ctrl и d или используя одну из следующих служб: (открывается в новом окне)

Теплопроводность тепловых трубок | Celsia

Знание теплопроводности тепловой трубы важно при выполнении Excel или CFD-моделирования двухфазных устройств, интегрированных в блок радиатора.Теоретически теплопроводность тепловых трубок может составлять от 4000 до 100000 Вт / м-К. На самом деле диапазон применений для охлаждения электроники составляет от 1500 до 50 000 Вт / м-К. Это все еще огромное улучшение по теплопроводности твердой меди (390 Вт / м-К) или твердого алюминия (200 Вт / м-К). Это различие делает тепловые трубки незаменимым компонентом для многих сегодняшних высокоэффективных радиаторов. Инженеры должны подтвердить теплопроводность для каждого приложения, потому что теплопроводность тепловой трубы, в отличие от твердых металлов, зависит от длины (поддерживая постоянную мощность и размер источника тепла, а также длину радиатора (испарителя).

Рисунок 1: Зависимость эффективной теплопроводности тепловой трубы от длины

На рисунке 1 показано влияние длины на теплопроводность тепловой трубы. В этом примере три тепловые трубки используются для передачи тепла от источника питания мощностью 75 Вт. В то время как теплопроводность 10 000 Вт / м · К достигается при длине тепловых трубок чуть менее 100 мм, длина 200 мм составляет менее одной трети от обычно публикуемой максимальной теплопроводности, составляющей 100 000 Вт / м.K. Как видно из расчета эффективной теплопроводности в уравнении (1), эффективная длина тепловой трубы является функцией адиабатической длины, длины испарителя и конденсатора:

K eff = QL eff / (A ΔT) ( 1)

, где:

K eff = Эффективная теплопроводность [Вт / мК]

Q = Передаваемая мощность [Вт]

L eff = Эффективная длина = (испаритель L + конденсатор L ) / 2 + L адиабатический [м]

A = Площадь поперечного сечения [м 2 ]

ΔT = Разница температур между секциями испарителя и конденсатора [° C]

Вы можете рассчитать эффективную теплопроводность тепловой трубы с помощью нашего онлайн-калькулятора тепловых трубок.Чтобы определить коэффициент теплопроводности паровой камеры, воспользуйтесь нашим онлайн-калькулятором теплоотвода.

Ссылки по теме

Различия в теплопроводности твердого металла и теплопроводности тепловых труб

Теплопроводность твердого металла остается постоянной, поскольку он состоит из одного и того же материала, например меди. Следовательно, каждая молекула меди должна передавать тепло следующей молекуле меди. Вроде как старая бригада ведра.Толщина меди, длина или приложенный тепловой поток не имеют значения.

Теплопроводность тепловых трубок, напротив, имеет несколько стадий теплопередачи. Хотя правда, что сначала тепло должно пройти через внешнюю твердую медную стенку тепловой трубы, процесс теплопередачи ускоряется на следующем этапе: испарении жидкости. На этом этапе рабочая жидкость, в большинстве случаев вода, под воздействием тепла превращается в пар. А поскольку тепловое сопротивление пара, движущегося по тепловой трубке, настолько минимально, это увеличивает теплопроводность.Более того, чем большее расстояние проходит пар (чем длиннее тепловая трубка), тем больше увеличивается эффективная теплопроводность тепловой трубки.

Различия в теплопроводности в зависимости от диаметра тепловой трубы

Если все остальные переменные остаются постоянными, теплопроводность тепловой трубы изменяется с диаметром, но не в ожидаемом направлении. Тепловые трубы малого диаметра, хотя и имеют более низкий Qmax, имеют более высокую эффективную теплопроводность, чем трубы большего диаметра.Это связано с тем, что эффективная теплопроводность уменьшается пропорционально площади поперечного сечения. Тепловые трубы большего диаметра имеют большее поперечное сечение. По этой же причине паровая камера для конкретного применения будет иметь более низкую теплопроводность, чем эквивалентное решение с тепловыми трубками.

Информацию о двухфазных конструкциях можно найти в этих двух статьях: Руководство по проектированию тепловых трубок и Руководство по проектированию охлаждения паровой камеры.

Как спроектировать плоский радиатор

Радиатор — это часть, которая отводит тепло от тепловыделяющего компонента к большей площади поверхности, чтобы рассеять тепло в окружающую среду, тем самым снижая температуру компонента.Исходя из этого определения, в качестве радиатора может использоваться что угодно, от прямоугольного листа металла до сложной профилированной меди или алюминия с оребрением. В ситуациях, когда имеется достаточно места и / или тепло, рассеиваемое компонентом, мало, в качестве эффективного теплоотвода можно использовать алюминиевую или медную пластину. Радиатор может быть простой пластиной или металлической стенкой корпуса, в которой находится компонент, как показано на рисунке 1.

Рисунок 1. Размеры плоского радиатора

Чтобы оценить размеры плоского пластинчатого радиатора, вам необходимо определить путь теплового потока к окружающей среде и величину, с которой этот путь сопротивляется потоку тепла.Схема теплового сопротивления, показанная на рисунке 2, будет использоваться для представления пути теплового потока. Давайте исследуем каждый из элементов термического сопротивления:

Рис. 2. Схема теплового сопротивления плоского радиатора

Сопротивление перехода к корпусу
Тепловое сопротивление перехода к корпусу (R th-jc ) — это тепловое сопротивление от рабочей части полупроводникового прибора к внешняя поверхность корпуса (корпуса), на которую будет крепиться радиатор.Температура корпуса считается постоянной по всей поверхности крепления. R th-jc — это измеренное значение, обычно предоставляемое производителями устройства и указанное в технических характеристиках устройства.


Контактное и тепловое Сопротивление интерфейса
Тепловое контактное сопротивление (R cont ) — это тепловое сопротивление между корпусом и радиатором. Из-за несовершенства поверхности корпуса и радиатора фактическая площадь контакта меньше, чем кажущаяся площадь контакта, как показано на рисунке 3.Для расчета R cont были предложены математические модели, основанные на контактном давлении, шероховатости поверхности и твердости материала. Эти модели могут быть довольно сложными, и получить информацию о поверхности и твердости материала может быть сложно. Обычно R cont определяется на основании экспериментальных данных и прошлого опыта.

Для уменьшения влияния R cont используются интерфейсные материалы, заполняющие зазоры между корпусом и радиатором.Эти материалы представлены в виде специальных термопастей, наполнителей, термопрокладок с фазовым переходом и термолент. Теплопроводность этих материалов колеблется от 0,5 Вт / м-К до 4 Вт / м-К. Когда зазор между двумя сопрягаемыми поверхностями заполнен материалом термоинтерфейса, тепловое сопротивление корпуса и радиатора теперь зависит от толщины материала интерфейса, теплопроводности и площади поверхности, определяемой уравнением 1.

1
где:
— толщина материала термоинтерфейса
— теплопроводность материала термоинтерфейса
— кажущаяся площадь контакта корпуса

Примечание: для многих материалов термоинтерфейса теплопроводность зависит от давления зажима.Производитель обычно предоставляет эти данные в листах технических характеристик продукта.

Рисунок 3. Сопротивления контактов, интерфейса и перехода к корпусу


Сопротивление тепловому растеканию
Сопротивление тепловому растеканию (R sp ) является результатом теплопередачи через проводимость между площадью контакта корпуса на поверхности плоской пластины и большей площадью рассеивающей тепло поверхности плоской пластины. тарелка. Уравнения в замкнутой форме для R sp были разработаны Ли и др. [1].Эти уравнения обеспечивают очень близкое приближение к точному решению, которое не будет здесь обсуждаться из-за сложности требуемых вычислений.

Первым шагом в использовании уравнений Ли является преобразование размеров двух взаимодействующих прямоугольных поверхностей в эквивалентные радиусы с помощью уравнений 2 и 3.

2

3

R sp затем можно рассчитать по следующим уравнениям:

4

5

6

где:
— эффективный коэффициент конвекции плоской пластины

См. Уравнение 18 для расчета h eff .

— теплопроводность плоской пластины

7

8

9

10

Тепловое сопротивление конвекции
Тепловое сопротивление конвекции влияет на то, насколько хорошо тепло отводится от поверхности пластины за счет движения воздуха. Безразмерное число Нуссельта [2] для нагретой вертикальной плоской пластины, подвергающейся естественной конвекции, определяется уравнением 11. Число Нуссельта — это безразмерная переменная, используемая в расчетах конвекции.

11

где:

12

— это число Прандтля воздуха, оцененное при T avg

— температура поверхности пластины

— температура окружающего воздуха

ускорение свободного падения

13

— кинематическая вязкость воздуха, оцененная при T ср.

.

— коэффициент температуропроводности воздуха, оцененный при T avg

Средний коэффициент конвекции рассчитывается по уравнению 14.Тепловое сопротивление конвекции R conv является функцией площади поверхности пластины A p и среднего коэффициента конвекции и рассчитывается с использованием уравнения 15. Обратите внимание, что площадь поверхности пластины не включает площадь, обусловленную толщиной пластины, поскольку она равна считается намного меньше, чем передняя и задняя поверхности.

14

где:

— теплопроводность воздуха, оцененная при T avg

15

Термическое сопротивление излучению
Тепловое сопротивление из-за излучения определяется уравнением 16.

16

где:

15

— коэффициент излучения поверхности плоской пластины

( постоянная Стефана-Больцмана )

Предполагается, что пластина излучает тепло на гораздо большую окружающую поверхность, поэтому окружающую среду можно рассматривать как идеальный радиатор или черное тело. В определенных ситуациях температура окружающей поверхности может отличаться от температуры окружающего воздуха. В этих случаях T amb следует заменить температурой окружающей поверхности в уравнении 15.

Эффективный коэффициент конвекции h eff , используемый для расчета сопротивления тепловому растеканию, определяется уравнением 18.

18

Значения R rad , R conv и R sp не могут быть непосредственно определены, поскольку они являются функциями T s температуры поверхности пластины. Предполагая, что все тепло, генерируемое источником тепла, рассеивается плоской пластиной, уравнение, определяющее этот баланс энергии, дается уравнением 19.

19

где:
— тепло, выделяемое источником тепла

T s можно рассчитать с помощью числового решателя, доступного в большинстве математических программ, или функции «Поиск цели» в Excel.

При всех известных тепловых сопротивлениях тепловая цепь, показанная на рисунке 2, может быть уменьшена до одного перехода к сопротивлению окружающей среды R j-a с использованием уравнения 20.

20

Наконец, используя уравнение 21, можно получить температуру перехода или источника тепла.

21

Онлайн-калькулятор радиатора, основанный на методологии расчета, описанной в этом сообщении в блоге, доступен бесплатно. Щелкните следующую ссылку, чтобы получить доступ к калькулятору: Бесплатное онлайн-программное обеспечение для расчета радиатора

Ссылки:
[1] С. Ли, С. Сонг, В. Ау и К.П. Моран, «Модель сопротивления сжатию / растеканию для электронных корпусов», в: Труды инженерной конференции ASME / JSME, Vol.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *