Выбор типа слоя | Вызывает диалог выбора типа слоя (однородный, неоднородный, каркас, перекрестный каркас, кладка) и задания параметров слоя. В настоящий момент в конструкции допустимо не более одного слоя с типом «Каркас» и одного с типом «Перекрестный каркас». Количество слоев прочих типов не лимитируется. | |
Переместить внутрь | Перемещает слой в сторону внутренней стороны конструкции. | |
Переместить наружу | Перемещает слой в сторону наружной стороны конструкции. | |
Включение\выключение слоя | Позволяет «выключить» (игнорировать при расчетах) слой, не удаляя его. Обратное действие включает слой. | |
Изменить характеристики | Вызывает диалог изменения характеристик материалов слоя. Изменение действует до перехода в текущей вкладке браузера на новую страницу или закрытие вкладки или самого браузера. | |
Удалить слой | Удаляет слой из конструкции. | |
Вставить слой | Вставить слой | Вызывает диалог выбора материала, который будет добавлен, и вставляет новый слой в конструкцию. |
Загрузить график | Загрузить график | Инициирует загрузку файла с графиком. |
Материалы | Замена материала | При нажатии на наименование материала в таблице «Конструкция» вызывается диалог выбора материала и, при необходимости, производится замена материала на выбранный |
Сортамент металлопроката
Сортамент металлопроката
Уголок
Уголок равнополочный по ГОСТ 8509-93
Уголок неравнополочный по ГОСТ 8510-86
Швеллер
Швеллеp с паpаллельными гpанями полок по ГОСТ 8240-97
- Швеллеp с уклоном полок по ГОСТ 8240-97
- Швеллеpы экономичные с паpаллельными гpанями полок по ГОСТ 8240-97
- Швеллеpы специальные по ГОСТ 8240-97
- Швеллеpы легкой серии с параллельными гранями полок по ГОСТ 8240-97
- Гнутый равнополочный швеллер по ГОСТ 8278-83 из сталей С239-С245
- Гнутый равнополочный швеллер по ГОСТ 8278-83 из сталей С255-С275
- Двутавр
- Двутавp колонный (К) по ГОСТ 26020-83
- Двутавp с уклоном полок по ГОСТ 8239-89
- Двутавp дополнительной серии (Д) по ГОСТ 26020-83
- Двутавp нормальный (Б) по ГОСТ 26020-83
- Двутавp широкополочный по ГОСТ 26020-83
- Двутавp нормальный (Б) по СТО АСЧМ 20-93
- Двутавp широкополочный (Ш) по СТО АСЧМ 20-93
- Двутавp колонный (К) по СТО АСЧМ 20-93
- Трубы круглые
- Тpубы электросварные прямошовные по ГОСТ 10704-91
- Тpубы бесшовные горячедеформированные по ГОСТ 8732-78
- Тавр
- Тавp колонный (КТ) по ТУ 14-2-685-86
- Тавp ШТ по ТУ 14-2-685-86
- Трубы прямоугольные
- Гнутые замкнутые сварные по ГОСТ 30245-2003
- Прямоугольные трубы по ГОСТ 30245-94
- Прямоугольные трубы по ГОСТ 25577-83*
- Трубы стальные прямоугольные по ГОСТ 8645-68
- Прямоугольные трубы по ГОСТ 12336-66
- Трубы квадратные
- Трубы стальные квадратные по ГОСТ 8639-82
- Гнутые замкнутые сварные по ГОСТ 30245-2003
- Квадратные трубы по ГОСТ 30245-94
- Квадратные трубы по ГОСТ 25577-83*
- Трубы стальные квадратные по ГОСТ 8639-68
Расчет массы для L20x3 ГОСТ 8509-93. Укажите длину в метрах Масса кг.
Теплотехнический калькулятор | Saint Gobain
Покрытие
Стена
Перекрытие
Выберите тип конструкции
Плоская кровля (железобетон)
Плоская кровля (профлист)
Скатная кровля
Штукатурный фасад
Навесной вентилируемый фасад
Над холодным подвалом, сообщающимся с наружным воздухом
Над неотапливаемым подвалом со световыми проёмами в стенах
Над неотапливаемым подвалом без световых проёмах в стенах, расположенное выше уровня земли
Над неотапливаемым подвалом без световых проёмах в стенах, расположенное ниже уровня земли
Над холодными подпольями без ограждающих стенок
Над холодными подпольями c ограждающими стенками
Шаг №2 — Климат
Расчетная температура наружного воздуха (text):
(обеспеченностью 0,92, СП 131. 13330.2012 т.3.1)
Расчетная средняя температура отопительного периода (tht):
(со среднесуточной t ≤ 8 °C, СП 131.13330.2012 т.3.1)
Продолжительность отопительного периода (zht):
(со среднесуточной t ≤ 8 °C, СП 131.13330.2012 т.3.1)
Зона влажности:
нормальная
Шаг №1 — Тип конструкции
Шаг №3 — Тип помещения
Температура пребывания (tint):
(по ГОСТ 30494-2011)
Относительная влажность воздуха, не более (ф):
(по ГОСТ 30494-2011, СП 131. 13330.2012 т.3.1)
Коэффициент однородности конструкции (r):
(по ГОСТ Р 54851-2011)
Наличие в конструкции рёбер с соотношением высоты
ребра к шагу h/a ≥ 0.3
ДаНет
Коэффициент a:
(СП 50.13330.2012, т.3)
Коэффициент b:
(СП 50. 13330.2012, т.3)
Коэффициент теплоотдачи внутренней поверхности (αint):
(по СП 50.13330.2012, т.4)
Нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции:
(по СП 50.13330.2012, т.5)
Коэффициент теплоотдачи наружной поверхности (αext):
(по СП 50.13330.2012, т.6)
Влажностный режим помещения:
(СП 50. 13330.2012 т.1)
Условия эксплуатации ограждающих конструкций:
(СП 50.13330.2012 т.2)
Шаг №2 — Климат
Шаг №4 — Структура
Недавно вы изменили тип конструкции. Хотите ли вы загрузить типовой пример для него?
Да
Нет
Добавить слой
Шаг №3 — Тип помещения
Шаг №5 — Результаты расчёта
{{if funcLabel}}
${funcLabel. toUpperCase()}
{{/if}}
Вернуться к началу
Подробный отчёт
Сохранить в PDF
${isolator.label}
{{if $data.calc.SigmaUT По результатам расчёта, необходимости в утеплителе нет.
{{else}}
δут = ${calc[«SigmaUT»]} мм
{{/if}}
Конструкция удовлетворяет требованию по тепловой защите.
{{if $data. calc[«Tint_calc»] >= $data.calc[«Tint_est»]}}
Конструкция удовлетворяет санитарно-гигиеническому требованию.
{{else}}
Конструкция не удовлетворяет санитарно-гигиеническому требованию.
{{/if}}
${calc.hydro.verdict}.
{{else}}
Расчёт не удалось произвести.
{{/if}}
Теплотехнический расчет (пример, программа, калькулятор онлайн).
В современных условиях человек все чаще задумывается о рациональном использовании ресурсов. Электричество, вода, материалы. К экономии всего этого в мире пришли уже достаточно давно и всем понятно как это сделать. Но основную сумму в счетах на оплату составляет отопление, и не каждому понятно, как снизить расход по этому пункту.
Что такое теплотехнический расчет?
Теплотехнический расчет выполняют для того, чтобы подобрать толщину и материал ограждающих конструкций и привести здание в соответствие нормам тепловой защиты. Основным нормативным документом, регламентирующим способность конструкции сопротивляться теплопередаче, является СНиП 23-02-2003 «Тепловая защита зданий».
Основным показателем ограждающей поверхности с точки зрения теплозащиты стало приведенное сопротивление теплопередаче. Это величина, учитывающая теплозащитные характеристики всех слоев конструкции, учитывая мостики холода.
Подробный и грамотный теплотехнический расчет — достаточно трудоемок. При возведении частных домов, собственники стараются учесть прочностные характеристики материалов, часто забывая о сохранении тепла. Это может привести к довольно плачевным последствиям.
Зачем выполняется расчет?
Перед началом строительства заказчик может выбрать, будет он учитывать теплотехнические характеристики или обеспечит только прочность и устойчивость конструкций.
Расходы на утепление совершенно точно увеличат смету на возведение здания, но снизят затраты на дальнейшую эксплуатацию. Индивидуальные дома строят на десятки лет, возможно, они будут служить и следующим поколениям. За это время затраты на эффективный утеплитель окупятся несколько раз.
Что получает владелец при правильном выполнении расчетов:
- Экономия на отоплении помещений. Тепловые потери здания снижаются, соответственно, уменьшится количество секций радиатора при классической системе отопления и мощность системы теплых полов. В зависимости от способа нагрева, затраты владельца на электричество, газ или горячую воду становятся меньше;
- Экономия на ремонте. При правильном утеплении в помещении создается комфортный микроклимат, на стенах не образуется конденсат, и не появляются опасные для человека микроорганизмы. Наличие на поверхности грибка или плесени требует проведения ремонта, причем простой косметический не принесет никаких результатов и проблема возникнет вновь;
- Безопасность для жильцов. Здесь, также как и в предыдущем пункте, речь идет о сырости, плесени и грибке, которые могут вызывать различные болезни у постоянно пребывающих в помещении людей;
- Бережное отношение к окружающей среде. На планете дефицит ресурсов, поэтому уменьшение потребления электроэнергии или голубого топлива благоприятно влияет на экологическую обстановку.
Нормативные документы для выполнения расчета
Приведенное сопротивление и его соответствие нормируемому значению – главная цель расчета. Но для его выполнения потребуется узнать теплопроводности материалов стены, кровли или перекрытия. Теплопроводность – величина, характеризующая способность изделия проводить через себя тепло. Чем она ниже, тем лучше.
Во время проведения расчета теплотехники опираются на следующие документы:
- СП 50.13330.2012 «Тепловая защита зданий». Документ переиздан на основе СНиП 23-02-2003. Основной норматив для расчета [1];
- СП 131.13330.2012 «Строительная климатология». Новое издание СНиП 23-01-99*. Данный документ позволяет определить климатические условия населенного пункта, в котором расположен объект [2];
- СП 23-101-2004 «Проектирование тепловой защиты зданий» более подробно, чем первый документ в списке, раскрывает тему [3];
- ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года) «Здания жилые и общественные» [4];
- Пособие для студентов строительных ВУЗов Е.Г. Малявина «Теплопотери здания. Справочное пособие» [5].
* — дальше в тексте я буду ссылаться на нормативные документы и чтобы полностью не прописывать их название я укажу только номер, например [1].
Теплотехнический расчет не сложен. Его может выполнить человек без специального образования по шаблону. Главное очень внимательно подойти к вопросу.
Пример расчета трехслойной стены без воздушной прослойки
Давайте подробно рассмотрим пример теплотехнического расчета. Для начала необходимо определиться с исходными данными. Материалы для строительства стен Вы, как правило, выбираете сами. Мы же будем рассчитывать толщину утепляющего слоя исходя из материалов стены.
Исходные данные
Данные индивидуальные для каждого объекта строительства и зависят от места расположения объекта.
1. Климат и микроклимат
- Район строительства: г. Вологда.
- Назначение объекта: жилое.
- Относительная влажность воздуха для помещения с нормальным влажностным режимом составляет 55% ([1] п.4.3. табл.1).
- Температура внутри жилых помещений tint задается нормативными документами ([4] табл.1) и равна 20 градусов Цельсия».
text — расчетная температура воздуха снаружи. Она устанавливается по температуре самых холодных пяти дней в году. Значение можно найти в [2], таблице 1, столбец 5. Для заданной местности значение составляет -32ᵒС.
zht = 231 сутки – количество дней периода, когда необходимо дополнительное отопление помещения, то есть среднесуточная температура снаружи составляет меньше 8ᵒС. Значение ищут в той же таблице, что и предыдущее, но в столбце 11.
tht = -4,1ᵒС – средняя температура воздуха снаружи во время периода отопления. Значение указано в столбце 12.
2. Материалы стены
В расчет следует принимать все слои (даже слой штукатурки, если он есть). Это позволит наиболее точно рассчитать конструкцию.
В данном варианте рассмотрим стену, состоящую из следующих материалов:
- слой штукатурки, 2 сантиметра;
- внутренняя верста из кирпича керамического рядового полнотелого толщиной 38 сантиметров;
- слой минераловатного утеплителя Roсkwool, толщина которого подбирается расчетом;
- наружная верста из лицевого керамического кирпича, толщиной 12 сантиметров.
3. Теплопроводность принятых материалов
Все свойства материалов должны быть представлены в паспорте от производителя. Многие компании представляют полную информацию о продукции на своих сайтах. Характеристики выбранных материалов для удобства сводятся в таблицу.
№ п/п | Материал | Толщина слоя, δ, мм | Теплопроводность, λ, Вт/(м*ᵒС) | Плотность, ρ, кг/м3 |
1 | Сложный штукатурный раствор | 20 | 0,87 | 1700 |
2 | Кладка из кирпича рядового керамического полнотелого | 380 | 0,48 | 1600 |
3 | Минераловатные плиты
Roсkwool | Неизвестно | 0,038 | 90 |
4 | Кладка из кирпича лицевого керамического полнотелого | 120 | 0,48 | 1600 |
Расчет толщины утеплителя для стены
1.
Условие энергосбережения
Расчет значения градусо-суток отопительного периода (ГСОП) производится по формуле:
Dd = (tint — tht) zht.
Все буквенные обозначения, представленные в формуле, расшифрованы в исходных данных.
Dd = (20-(-4,1)) *231=5567,1 ᵒС*сут.
Нормативное сопротивление теплопередаче находим по формуле:
Rreq=a*Dd+b.
Коэффициенты а и b принимаются по таблице 4, столбец 3 [4].
Для исходных данных а=0,00045, b=1,9.
Rreq = 0,00045*5567,1+1,9=3,348 м2*ᵒС/Вт.
2. Расчет нормы тепловой защиты исходя из условий санитарии
Данный показатель не рассчитывается для жилых зданий и приводится в качестве примера. Расчет проводят при избытке явного тепла, превышающем 23 Вт/м3, или эксплуатации здания весной и осенью. Также вычисления необходимы при расчетной температуре менее 12ᵒС внутри помещения. Используют формулу 3 [1]:
Коэффициент n принимается по таблице 6 СП «Тепловая защита зданий», αint по таблице 7, Δtn по пятой таблице. ут= 0,038*2,127 = 0,081 м.
Найденная величина является минимальной. Слой утеплителя принимают не меньше этого значения. В данном расчете принимаем окончательно толщину минераловатного утеплителя 10 сантиметров, для того, чтобы не пришлось резать купленный материал.
Для расчетов тепловых потерь здания, которые выполняются для проектирования отопительных систем, необходимо найти фактическое значение сопротивления теплопередаче с найденной толщиной утеплителя.
Rо = Rint+Rext+∑Ri = 1/8,7 + 1/23 + 0,023 + 0,79 + 0,1/0,038 + 0,25 = 3,85 м2*ᵒС/Вт > 3,348 м2*ᵒС/Вт.
Условие выполнено.
Влияние воздушного зазора на теплозащитные характеристики
При устройстве стены, защищенной плитным утеплителем возможно устройство вентилируемой прослойки. Она позволяет отводить конденсат от материала и предотвращать его намокание. Минимальная толщина зазора 1 сантиметр. Это пространство не замкнуто и имеет непосредственное сообщение с наружным воздухом.
При наличии воздушно-вентилируемой прослойки в расчете учитываются только те слои, которые находятся до нее со стороны теплого воздуха. Например, пирог стены состоит из штукатурки, внутренней кладки, утеплителя, воздушной прослойки и наружной кладки. В расчет принимаются только штукатурка, внутренняя кладка и утеплитель. Наружный слой кладки идет после вентзазора, поэтому не учитывается. В данном случае наружная кладка выполняет лишь эстетическую функцию и защищает утеплитель от внешних воздействий.
Важно: при рассмотрении конструкций, где воздушное пространство замкнуто, оно учитывается в расчете. Например, в случае оконных заполнений. Воздух между стеклами играет роль эффективного утеплителя.
Программа «Теремок»
Для выполнения расчета с помощью персонального компьютера специалисты часто используют программу для теплотехнического расчета «Теремок». Она существует в онлайн-варианте и как приложение для оперативных систем.
Программа производит вычисления на основе всех необходимых нормативных документов. Работа с приложением предельно проста. Оно позволяет выполнять работу в двух режимах:
- расчет необходимого слоя утеплителя;
- проверка уже продуманной конструкции.
В базе данных имеются все необходимые характеристики для населенных пунктов нашей страны, достаточно лишь выбрать нужный. Также необходимо выбрать тип конструкции: наружная стена, мансардная кровля, перекрытие над холодным подвалом или чердачное.
При нажатии кнопки продолжения работы появляется новое окно, позволяющее «собрать» конструкцию. Многие материалы имеются в памяти программы. Они подразделены на три группы для удобства поиска: конструкционные, теплоизоляционные и теплоизоляционно-конструкционные. Нужно задать лишь толщину слоя, теплопроводность программа укажет сама.
При отсутствии необходимых материалов их можно добавить самостоятельно, зная теплопроводность.
Перед тем как производить вычисления, необходимо выбрать тип расчета над табличкой с конструкцией стены. В зависимости от этого программа выдаст либо толщину утеплителя, либо сообщит о соответствии ограждающей конструкции нормам. После завершения вычислений, можно сформировать отчет в текстовом формате.
«Теремок» очень удобен для пользования и с ним способен разобраться даже человек без технического образования. Специалистам же он значительно сокращает время на вычисления и оформление отчета в электронном виде.
Главным достоинством программы является тот факт, что она способна вычислить толщину утепления не только наружной стены, но и любой конструкции. Каждый из расчетов имеет свои особенности, и непрофессионалу довольно сложно разобраться во всех. Для строительства частного дома достаточно освоить данное приложение, и не придется вникать во все сложности. Расчет и проверка всех ограждающих поверхностей займет не более 10 минут.
Теплотехнический расчет онлайн (обзор калькулятора)
Теплотехнический расчет можно сделать в Интернете онлайн. Неплохим, как на мое усмотрение являться сервис: rascheta.net. Давайте вкратце рассмотрим, как с ним работать.
Перейдя на сайт онлайн калькулятора, первым делом нужно выбрать нормативы по которым будет производится расчет. Я выбираю свод правил от 2012 года, так как это более новый документ.
Дальше нужно указать регион в котором будет строятся объект. Если нет Вашего города выбирайте ближайший большой город. После этого указываем тип зданий и помещений. Скорей всего Вы будете рассчитывать жилое здание, но можно выбрать общественные, административные, производственные и другие. И последнее, что нужно выбрать — вид ограждающей конструкции (стены, перекрытия, покрытия).
Расчетную среднюю температуру, относительную влажность и коэффициент теплотехнической однородности оставляем такими же, если не знаете как их изменять.
В опциях расчета устанавливаем все две галочки, кроме первой.
В таблице указываем пирог стены начиная снаружи — выбираем материал и его толщину. На этом собственно весь расчет и закончен. Под таблицей будет результат расчета. Если какое-то из условий не выполняется меняем толщину материала или же сам материал, пока данные не будут соответствовать нормативным документам.
Если Вы желаете посмотреть алгоритм расчета, то нажимаем на кнопку «Отчет» внизу страницы сайта.
Расчет теплопотерь дома: калькулятор онлайн теплотехнического расчета
На чтение 11 мин. Просмотров 3.2k. Обновлено
Для того, чтобы спроектировать систему отопления, которая удовлетворяла бы как требованиям комфортного проживания в доме, так и оптимального расходования ресурсов семьи, необходимо сначала рассчитать его возможные теплопотери.
Расчет теплопотерь — это способ, определить примерное количество теплопотерь, которое теряет дом через ограждающий контур за конкретное время, в самый холодный период пятидневки. Единица измерения теплопотерь — Ватты.
Полученный результат приблизительный, и требует экспериментальной проверки, так как не реально учесть все моменты, которые влияют на тепловые потери: неправильная конструкция перегородок, разница между температурой внутри и снаружи, действие осадков, солнечной радиации и ветра. Зная данные показатели, можно выбирать модель системы отопления нужной мощности для любого дома.
Калькулятор онлайн
Логика расчета
Процентное соотношение теплопотерь дома через элементы его конструкции, указанное на картинке, весьма приблизительно, поскольку сильно зависит от их устройства и используемых материалов. Потери тепла на инфильтрацию происходят в результате утечки воздуха через щели, некачественное уплотнение дверей и окон, принудительной и естественной вентиляции помещений. Уносимое с воздухом тепло приходится компенсировать более интенсивной работой системы отопления.
Расчет теплопотерь в данной программе выполняется отдельно для каждой стены, пола и потолка с учетом общих для всех элементов помещения условий. Это сделано исходя из следующих предположений:
- стены могут как непосредственно соприкасаться с атмосферным воздухом, так и выходить в нетапливаемое или плохо отапливаемые помещения;
- исходя из этого толщина стен и используемый для них материал могут отличаться;
- конструкция окон также может быть неодинакова.
Для расчета теплопотерь помещения в общем случае необходима площадь рассматриваемых элементов, характеристики теплопроводности или сопротивления теплопередаче используемых материалов и их толщина, а также разница между температурой воздуха внутри помещения (20-22 градуса) и температурой воздуха снаружи.
Температура атмосферного воздуха должна приниматься по самому холодному периоду отопительного сезона и указывается в общих условиях для расчета; если для какой-то стены она другая, введите ее в поле “температура воздуха снаружи помещения”. Для потолка температура, отличная от атмосферной, может быть введена в поле “температура над”, а для пола – “температура снизу”(вводится обязательно). Температура над потолком зависит от наличия или отсутствия утепления чердачного помещения; под полом – от наличия или отсутствия подвала и его типа (чаще всего принимается 0-7+ градусов).
Наружные двери могут выходить прямо на улицу или в неотапливаемое помещение; последнее обстоятельство учитывается в программе умножением рассчитанных теплопотерь через дверь на коэффициент 0.7.
Расчетные потери тепла на инфильтрацию воздуха можно регулировать варьируя значения, вводимые в поле “доля объема воздуха в помещении, подлежащая ежечасному обмену”; дело в том, что требуемый СНИПом ежечасный обмен всего объема воздуха, находящегося в доме, на практике считается завышенным и приводящим к большим затратам на отопление.
Коэффициенты теплопроводности используемых в строительстве материалов берутся из соответствующих таблиц или по данным изготовителей. Это касается и сопротивления теплопередачи стеклопакетов и им подобных конструкций. Что касается стеклопакетов, то при их выборе следует обращать внимание на обозначение.
Например, в обозначении стеклопакета 4-10ap-4: 4 -толщина стекла; 10-расстояние между стеклами; ap – указывает, что это пространство заполнено инертным газом аргоном, что повышает его сопротивление теплопередаче.
В обозначении 4-14-4-14-4и “и” указывает,что стекла имеют мягкое низко эмиссионное покрытие; к-стекло имеет более твердое покрытие, защищено от мелких повреждений, его покрытие низко эмиссионное; pi – на стекло нанесена энергосберегающая пленка и др.
Приведенная в правой части рисунка схема относится к случаю, когда под домом нет подвала (“пол на грунте”) для упрощения решения сложной задачи определения теплопотерь через пол в грунт применяется методика разбиения площади ограждающих конструкций на 4 зоны.
Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче в м2·°с/вт:r1=2,1 r2=4,3 r3=8,6 r4=14,2. Зона 1 представляет собой полосу (при отсутствии заглубления грунта под строением) шириной 2 метра, отмеренную от внутренней поверхности наружных стен вдоль всего периметра; зоны 2 и 3 имеют также ширину 2 метра и располагаются за зоной 1 ближе к центру здания; зона 4 занимает всю оставшуюся центральную площадь.
В действительности же зоны 3 и 4 при небольших размерах дома могут отсутствовать. В заключение следует указать, что в программе используются следующие общепринятые коэффициенты:
- 23 – коэфф. теплоотдачи от стен к наружному воздуху
- 8.7 – коэфф. теплоотдачи от внутреннего воздуха к стенам
- 6 – коэфф. теплоотдачи от внутреннего воздуха к полу
- 12 – коэфф. теплоотдачи от потолка к наружному воздуху если неотапливаемый чердак,
- 1.18 – поправочный коэфф. при расчете теплопотерь пола не на грунте (по снип).
А также доступные в калькуляторе коэфф. теплоотдачи от пола к наружному воздуху/грунту для различных видов подвалов. Необходимо также отметить,что по правилам обмера зданий для расчета теплопотерь длина стен определяется по его наружному периметру, а их высота – от поверхности чистового пола до верхней плоскости потолочного перекрытия. Эту величину следует указывать в поле “высота помещений hp”.
Общие замечания по порядку расчета
- Сначала рассчитываются теплопотери через двери, стены и окна, все сразу, то есть после ввода всех данных по ним, или по отдельности – после ввода параметров, например по одной из стен или двери; затем рассчитываются таким же образом теплопотери через потолок, пол и потери на инфильтрацию.
- Каждый элемент может быть пересчитанный повторно после корректировки его параметров; при этом следует учесть, что если вы изменяете количество слоев материалов, сами материалы, наличие или отсутствие окон, перед всеми этими действиями следует нажать кнопку “сброс входных данных”.
- Расчет теплопотерь через пол, потолок и инфильтрацию возможен только после расчета потерь через стены.
- “Температура воздуха снаружи” (для стен) и “температура над” (для потолка) вводятся в случае, если они отличаются от температуры, указанной в общих условиях для расчета.
- Перед расчетом теплопотерь через стены из их площади вычитается площадь окон и двери.
Потери тепла через наружную оболочку
Значительно повышается экономия тепловой энергии при качественном утеплении контура дома и крыши. Необходимость в энергосберегающем ремонте возникает, когда в течение года тратится 100 кВт электрической энергии или 10 кубов природного газа, из расчёта на 1 кв. метр отапливаемой площади, с учётом перегородок.
Энергосберегающее здание — дом, имеющий сплошную теплоизоляцию по всему каркасу нагретой поверхности. В качестве теплоизолирующего материала отлично подходит пеностекло, фанера, пенопласт, гипсокартон. Металл (сталь), также является отличным проводником тепловой энергии. Приобретая стройматериалы, обязательно нужно обращать внимание на коэффициент теплопроводности, который указан в паспорте.
Варианты выхода нагретого воздуха:
- Крыша — толстый слой теплоизоляционного кровельного материала значительно уменьшит теплопотери.
К сведению: Если строение деревянное, то укладка теплозащиты на крыше затруднительна, так как происходит набухание древесины, и она может повредиться от влажности. - Стены — добиться снижения теплопотерь можно также используя специальное наружное покрытие. При утеплении изнутри, особенно если повышенная влажность, будет образовываться конденсат за изоляцией.
- Пол — в данном случае, практичнее делать утепление изнутри.
- Фундамент — его контакт с холодным грунтом значительно увеличивает теплопотерю на первом этаже.
- Термические мосты — наружные теплопроводники, не редко через них уходит большая часть нагретого воздуха. К ним относятся: бетонное половое покрытие, которое продолжается на балконе, дверные проёмы и окна, особенно классические, двойные. Есть также мосты, относящие к временным, когда перегородки крепятся на металлические элементы.
Современные окна — это стеклопакеты однокамерные и двухкамерные, имеющие специальную отражающую поверхность, что понижает потери излучения. Многослойное остекление более эффективно сохраняет тепло, чем обычное двойное окно.
Тепловые потери на вентиляцию
Обычно, у дома есть воздушные утечки — это оконные и дверные проёмы, и крыша, что создаёт воздухообмен. Но в зимнее время, этот вариант приводит к значительному выходу тёплого воздуха, поэтому с помощью новых технологий были разработаны конструкции уменьшающие утечку нагретых воздушных масс наружу.
Современные дома нуждаются в постоянном вентилировании, так как они имеют высокую воздухонепроницаемость. Для уменьшения теплопотерь связанных с вентиляцией, которые составляют от 10 до 40%, используются новейшие модели вентиляционных систем. Калькулятор теплопотерь дома делается по каждой комнате отдельно, Далее, определяется тепловой расход на вентиляцию — его объём и сколько раз происходила его смена в здание.
Рассчитывая теплотехнические вентиляционные потери, при помощи онлайн калькулятора, нужно учитывать предназначение дома. Для ванной комнаты и кухни требуется повышенный уровень вентиляции.
Минимальное утепление наружных стен
Для проведения онлайн теплотехнического расчёта для внешних стен существует несколько сложных методик, с учётом конвекционного обмена, излучения и т. д., но эти данные часто бывают излишними и не влияющими на итог.
Однако, есть более простой теплотехнический онлайн калькулятор для расчёта теплопотерь дома. Для большей точности, к данному показателю допустимо добавить 1 — 5%.
Важно! Применяя теплотехнический калькулятор, при расчёте потерь тепла дома, следует учитывать время пребывания человека в каждой комнате, чем оно меньше, тем за основу берутся меньшие температурные показания.
Есть два способа рассчитать расход тепла в доме:
- Метод усреднённых величин — получается приблизительный результат. Расчёт делается по специальной таблице, которая составлена для разных областей с учётом особенностей их климата и средних характеристик здания.
- Теплотехнический онлайн расчёт потерь тепла дома по периметру здания — площади всех внешних перегородок суммируются, и отнимается размер окон и дверей. Отдельно учитывается площадь крыши и пола, стройматериала и штукатурки. В дальнейшем калькулятор, для определения теплопотерь дома выглядит так: Q = S x ΔT/R, где S – размер полученной площади; ΔT – сведения о температурной разнице, внутри и снаружи; R – показатель сопротивления передачи тепла. R = n/λ;, где n – показатель толщины стен; λ – уровень удельной теплопроводности (Вт/м °C). Данное значение следует брать из таблицы, для необходимого стройматериала.
Материал | Коэффициент теплопроводимости | Толщина стен в мм |
Пенополистирол | 0,042 | 124 |
Минеральная вата | 0,046 | 135 |
Дерево, брус или бревно (сосна, ель, дуб) | 0,18 | 530 |
Керамические блоки уложенные на теплоизоляционный клей | 0,17 | 575 |
Керамический пустотный кирпич плотностью 1000 кг/м. кв.(Гост 530) уложенный на цементно-песчаный раствор | 0,52 | 1530 |
Силикатный кирпич на цементно-песчаном растворе | 0,87 | 2560 |
Железобетон | 2,04 | 602 |
Полученные результаты, отдельно рассчитанные для перегородок, полового покрытия и крыши, суммируются, прибавляются вентиляционные потери, и данные об утечке тепла через фундамент. В калькулятор теплотехнического расчёта для фундамента заносится меньшая температурная разница.
Данный метод поможет выбрать мощность котла, но не даёт возможность рассчитать необходимое количество радиаторов для каждой комнаты. Приблизительное минимальное качество утеплителя для стен снаружи в мм. выглядит так.
МАТЕРИАЛ | Высокое | Среднее | Низкое |
Слой из дерева плюс пенополистирол или слой каменной ваты | 300:100 | 300:50 | |
Дерево | 200 | ||
Газо и пенобетонный материал | 500 | 400 | 200 |
Газоблок и пенобетонный пласт плюс полистирол или каменная вата | 300:100 | 300:50 | |
Газовый и пенобетонный блок плюс кирпичная кладка | 100:120 | ||
Слой керамзитобетона плюс полистирол или пласт каменной ваты | 400:100 | 200:100 | |
Слой керамзитобетона | 300 | ||
Кирпичная кладка и полистирол или каменная вата | 250:200 | 250:100 | |
Силикатный кирпич | 250 |
Точка росы
Под точкой росы подразумевается температура воздуха, до которой он должен охладится, чтобы начать насыщаться и преобразовываться в росу. На данный показатель влияет давление воздуха.
Необходимо стараться избегать образования точки росы. Если это невозможно, следует сместить её к наружным пластам, кроме того требуется хорошая вентиляция этих слоёв.
Решение проблемы точки росы
Основная причина образования точки росы — это высокий уровень пустотелов во внутренних пластах, что приводит к повышению давления водяных паров в холодных слоях конструкции. Решить проблему можно путём добавления менее паронепроницаемого материала внутрь конструкции, или сделать вентиляционный зазора с наружной стороны.
Это позволит сдерживать водяные поры и не даст проходить им сквозь стены. Однако, если переусердствовать, то накопившиеся пары понизят качество воздуха внутри дома. Если здание эксплуатируется в суровых условиях (-20 и выше градусов), то следует сделать принудительное поступление прогретого воздуха в дом, используя теплообменники или нагреватели. В этом случае применение герметичных строительных пароизоляционных материалов не приведёт к ухудшению микроклимата в помещение. Использование онлайн расчёта облегчит процесс определения размера теплопотерь.
Онлайн калькулятор расчёта теплопотерь даёт возможность узнать коэффициент теплопроводимости стен дома или отдельного помещения, и правильно выбрать материал для простой или многослойной теплоизоляции. Кроме того, точность результата важна для при выборе бойлера, для выделения эффективного тепла без перегрева дома.
Расчет стен – теплозащита, утепление, температура и точка росы
Эта публикация не совсем про тепловидение в строительстве, скорее, совсем не про тепловидение. Сегодня я хочу рассказать о расчете теплового и влажностного режима наружных ограждающих конструкций. Задача такая часто возникает при тепловизионном обследовании зданий, оценке проектного уровня теплозащиты, разработке мероприятий по утеплению конструкций.
Тепловизор показывает нам только температуры поверхностей. Что происходит внутри, как распределяется температура по толщине конструкции неразрушающим методом не определить. Кроме температуры важным показателем является положение плоскости возможной конденсации влаги в конструкции, иными словами, положение точки росы. Будет конструкция сухой или с конденсатом зависит от положения точки росы. Это зависит от множества факторов, среди которых толщина и материалы всех слоев, температура и влажность в помещении, температура и влажность снаружи.
В своде правил СП 23-101-2004 «Проектирование тепловой защиты зданий» глава 9 «Методика проектирования тепловой защиты зданий» посвящена тепловому расчету и определению проектного значения сопротивления теплопередаче конструкции, глава 13 «Расчет сопротивления паропроницанию ограждающих конструкций» посвящена влажностному расчету. Исходные данные для расчета приведены в приложении Д «Расчетные теплотехнические показатели строительных материалов и изделий». Данные для расчета также можно взять из актуализированной версии СП 50.13330.2012. Внимание! Во многих программах использованы климатические данные СНиП 23-01-99, который заменен на СП 131.13330.2012.
[button color=»#ffffff» background=»#333333″ size=»medium» src=»http://yadi.sk/d/B5e8q-g52wQ1r»]СП 23-101-2004[/button] [button color=»#ffffff» background=»#333333″ size=»medium» src=»http://yadi.sk/d/OZa8t8KCBQteY»]СП 50.13330.2012[/button]
Существует ряд программ, которые позволяют автоматизировать расчет теплового и влажностного режимов ограждающих конструкций. Ниже я даю ссылки на бесплатные инструменты расчета.
ТЕПЛОРАСЧЕТ ссылка: http://теплорасчет.рф, или немецкий: http://www.u-wert.net
[divider scroll_text=»Наверх ↑»]
ATLAS SALTA ссылка: http://www.atlasrus.spb.ru
[divider scroll_text=»Наверх ↑»]
Теплотехнический калькулятор ссылка: http://www.smartcalc.ru/thermocalc
[divider scroll_text=»Наверх ↑»]
Огромная просьба, пожелания и вопросы о работе программ отправлять на сайты указанных программ. Там есть поддержка, форум, вам ответят. Внимание! Teplonadzor.ru никакого отношения к программам не имеет, ответственности за использование программ и их результатов не несет.
Теплотехнический расчет ограждающих конструкций онлайн
Теплотехнический расчет выполняют для достижения нормативных величин согласно ДБН В.2.6-31:2006 для Украины, ISO 13370:2007 для стран Европы и СНиП 41-03-2003 для России. Это очень важный момент при начале любом строительства – многоэтажный жилой дом, административное здание либо собственный дом. Многие строят по старинке «кирпич — воздушная прослойка — кирпич» и не задумываются о расходах на отоплении дома, ведь если хорошо утеплить дом, вы будете меньше платить за отопление. Конечно, вам нужно сначала вложить «кругленькую» сумму в утепление дома, но это лучше чем положить деньги на депозит в банк, с учетом ежегодной инфляции 20%. Причем утепление дома можно разбить на очереди, кроме утепления пола, который перед заливкой бетоном нужно утеплить.
Рассмотрим пример постройки дома размером 10 на 11 метров и высотой 6 метров. Стандартное утепление, исходя из практики строительства частных коттеджей в Украине :
- стены — 240 мм кирпич (черновая кладка), воздушная прослойка — 100 мм, фасадный кирпич – 120 мм;
- Крыша или перекрытие верхнего этажа 200-300 мм – конструктив, 100 мм утеплителя;
- Пол – 300 мм бетона, керамзит – 20 мм, утеплитель – 30 мм;
- Окна – 1 камерные с воздухом.
В начале проектирования системы отопления дома — выполняется теплотехнический расчет ограждающих конструкций, упрощенный теплотехнический расчет онлайн показан ниже. Для нашего примера количество тепловой энергии необходимое для системы отопления дома будет 26,5 кВт
Давайте утеплим дом согласно требованиям ДБН В.2.6-31:2006. Итак после выбора утеплителя и строго придерживаясь требований ДБН получаем : утеплитель для стен – 160 мм, для верхнего перекрытия или крыши – 290 мм, пол – 175 мм. Выполняем теплотехнический расчет онлайн – теперь нам необходимо 13,4 кВт. К примеру, стандартное утепление для северной части Европы для стен – 200 мм, для крыши – 400 мм. Другими словами вы делаете термос, в котором вода очень долго остывает, а в нашейм случае дом больше времени держит тепло. Количество тепловой энергии, которое вы будете потреблять системой отопления, можете самостоятельно рассчитать онлайн нашим приложением.
Хотите заказать проект системы отопления дома перейдите по
ссылке.
Стоимость и пример результата
расширенного теплотехнического расчета онлайн ограждающих конструкций для проектировщиков, входящий в состав проектной документации
в развел «ОВ» (отопление и вентиляции). Оплатить можно при помощи
, а также по безналичному расчету.
Возникли вопросы звоните +38(044)331-2057,
+38(067)467-5677
Системы воздушного отопления
Системы воздушного отопления могут быть экономически эффективными, если их можно сделать простыми или если их можно комбинировать с системой вентиляции. Но — имейте в виду, что из-за низкой удельной теплоемкости воздуха использование воздуха для обогрева очень ограничено. Для больших тепловых нагрузок требуются большие объемы воздуха, что приводит к появлению огромных размеров воздуховодов и вентиляторов. Транспортировка огромных объемов воздуха требует много энергии.
Требуемый объем воздуха в системе воздушного отопления
Требуемый расход воздуха в системе воздушного отопления можно рассчитать как
L = Q / (c p ρ (t h — t r )) (1)
где
L = расход воздуха (м 3 / с)
Q = потери тепла, покрываемые системой воздушного отопления (кВт)
c p = удельная теплоемкость воздуха — 1.005 (кДж / кг o C)
ρ = плотность воздуха — 1,2 (кг / м 3 )
t h = температура нагревающего воздуха ( o C)
t r = комнатная температура ( o C)
Как показывает опыт, температура подаваемого воздуха для отопления должна находиться в диапазоне 40-50 o C . Расход воздуха должен быть в пределах 1-3 х объема помещения.
Уравнение (1) в британских единицах:
L = Q / (1.08 (t h — t r )) (2)
где
Q = тепло (btu / hr)
L = объем воздуха (куб.
t h = температура нагреваемого воздуха ( o F)
t r = комнатная температура ( o F)
Онлайн-калькулятор обогрева воздуха
Нагрев воздуха — повышение температуры Диаграмма
Приведенные ниже диаграммы рассчитаны на основе приведенных выше уравнений и могут использоваться для оценки количества тепла, необходимого для повышения температуры в воздушных потоках.
единиц СИ —
кВт, м 3 / с и o C
Имперские единицы —
БТЕ / ч, куб.фут / мин и o F
- 1 м 3 / с = 3600 м3 / ч = 35,32 фута 3 / с = 2118,9 футов 3 / мин (куб.футов в минуту)
- 1 кВт (кДж / с) = 859,9 ккал / ч = 3413 БТЕ / h
- T ( o C) = 5/9 [T ( o F) — 32]
Пример — Отопление одной комнаты воздухом
Здание с большой комнатой с обогревом потери 20 кВт нагревается воздухом с максимальной температурой 50 o C .Температура в помещении 20 o C . Требуемый расход воздуха можно рассчитать как
L = (20 кВт) / ((1,005 кДж / кг при o C) (1,2 кг / м 3 ) ((50 o C) — ( 20 o C)))
= 0,55 м 3 / с
Требуемый расход воздуха из электропечи — британские единицы
Требуемый расход воздуха от электрической печи можно выразить в британских единицах как
L куб. Футов в минуту = P w 3.42 / 1.08 dt (3)
где
L cfm = требуемый расход воздуха (cfm)
P w = электрическая мощность (Вт)
dt = разница температур ( o F)
Калькулятор нагрузки HVAC — Highseer
Простой в использовании инструмент HVAC для расчета необходимой тепловой мощности (в БТЕ)
Этот инструмент основан на методе квадратных футов, с добавленными вычислениями для наиболее важных включенных значений, таких как изоляция, окна и другие факторы.
Система предварительно настроена на внутреннюю температуру 72 градуса и наружную температуру 95 градусов.
Выберите свой регион и введите высоту зоны, а также площадь (длина, умноженная на ширину). В инструменте предварительно установлены различные коэффициенты с наиболее часто используемыми значениями, но их можно изменить по желанию, нажав кнопку «Дополнительные факторы», чтобы открыть эти дополнительные поля.
Поскольку большинство кондиционеров поставляются с шагом ½ тонны (6000 БТЕ / час), эта система должна быть достаточно близка к фактическим единицам, которые будут использоваться.
Примечание : Этот инструмент предоставляется строго как быстрый метод вычисления общих условий размера и стоимости. Методы квадратного фута считаются практическим правилом для использования в быстрых вычислениях. Точную тепловую нагрузку можно определить с помощью анализа полной тепловой нагрузки.
Заявление об отказе от ответственности
Рекомендуемые нагрузки в БТЕ были определены добросовестно и предназначены только для общих информационных целей. Мы не несем ответственности и не гарантируем полноту, надежность или точность этой информации.В некоторых приложениях может быть несколько других уникальных факторов, которые существенно влияют на эти значения или даже искажают их. Вы всегда должны консультироваться с лицензированным инженером-проектировщиком для получения наиболее точных измерений и значений, которые могут быть действительно получены только после того, как будет проведена тщательная проверка рабочей площадки и определены все связанные факторы.
Разрешить сценарии!
ЕСЛИ ВЫ ВИДИТЕ ЖЕЛТУЮ ПОЛОСКУ ПОД АДРЕСНОЙ БЛОКОЙ, ВЫ ДОЛЖНЫ НАЖАТЬ ЕГО, ЧТОБЫ РАЗРЕШИТЬ СЦЕНАРИИ. Этот сценарий не причинит вреда вашему компьютеру и не регистрирует никакой информации о вас. Для использования этого калькулятора в вашем браузере должен быть включен JavaScript.
Калькулятор мощности
| Уотлоу
Материал № {{$ index + 1}} ×
Выберите материал CustomAir 0 ° FAIR 1000 ° FAIR 100 ° FAIR 1050 ° FAIR 1100 ° FAIR 1150 ° FAIR 1200 ° FAIR 200 ° FAIR 250 ° FAIR 300 ° FAIR 350 ° FAIR 400 ° FAIR 450 ° FAIR 500 ° FAIR 50 ° Фаир 550 ° Фаир 600 ° Фаир 650 ° Фаир 700 ° Фаир 750 ° Фаир 800 ° Фаир 850 ° Фаир 900 ° Фаир 950 ° ФацетиленВоздухСпирт, этиловый (пар) спирт, метил (пар) аммиакАргонБутанБутиленДиоксид углеродаМоноксид углеродаХлорметилхлорметан, хлористый метиленхлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлористый эфир Кислота Водород Сероводородметан Оксид азота Азот Оксид азота Кислород Диоксид серы Водяной пар (212 ° F) Уксусная кислота, 100% ацетон, 100% аллиловый спирт, аммиак, 100% амиловый спирт, анилин, хлор, масло, асфальт, бензол, хлористый эфир, 25% спирт, хлористый эфир, хлористый эфир, хлористый эфир, 25% спирт, хлористый эфир, хлористый эфир, 25% спирт, хлористый эфир, хлористый эфир, 25% спирт Масло, эфир, этилацетат, этиловый спирт, 95% этилбромид, этилхлорид, этилйодид, этиленбромид, этиленхлорид, этиленгликоль, жирная кислота, алеиновая жирная кислота, пальмитиновая жирная кислота, стеариновая кислота, Свежая, средняя муравьиная кислота Фреон 11 Фреон 12 Фреон 22 Фрукты, свежие, средние Топливное масло № 1 (керосин) Топливное масло № 2 Топливное масло тяжелое № 5, № 6 Топливное масло Среда № 3, № 4 Базолин Глицерин Гептан Гексан Мед Гидрохлористоводородная кислота, 10% лед Ледяной крем Мерил Хлорид Среднеэтиленовый эфир Мерилметилен Мерилсодержащий крем , 3.5% меласса, нафталин, азотная кислота, 7% азотная кислота, 95% нитробензол, оливковое масло, парафин, плавленый (150 ° F +), изоцианат, компонент B, полиомасляная смола, перхлорэтилен, фенол (карболовая кислота), фосфорная кислота, 10% фосфорная кислота, фосфорная кислота, фосфорная кислота, 10%, фосфорная кислота (1000 °, пропан, 20 °) Пропионовая кислота, пропиловый спирт, SAE 10-30SAE 40-50, морская вода, натрий (1000 ° F), гидроксид натрия (каустическая сода), 30% раствор, гидроксид натрия (каустическая сода), 50% раствор, соевое масло, крахмал, сахар, 40% сахарный сироп, сахароза, 60% сахарный сироп, сера, плавленый (500 ° F) Серная кислота, 20% серная кислота, 60% серная кислота, 98% толуол Трансформаторные маслаТрихлор-трифторэтан, трихлорэтилен, турпентин, растительное масло, овощи, свежие, средние водные вина, столовые и десертные, средние ксилол, алюминий, алюминий, алюминий, 2024-0, азия, азот, алюминий, алюминий, алюминий Латунь (80-20) Латунь (Желтая) Бронза (75% Cu, 25% Sn) Кадмий Кальций Карбол (цементированный карбид) Углерод Хром Кобальт Константин (55% Cu, 45% Ni) Медь Немецкое серебро Золото Инколой 800 Инконель 600 Инвар 36% N Железо, литое железо, кованый свинец, линотип, литий, магний, марганец, ртуть, молибден, монель® 400, металл Muntz (60% меди, 40% цинка), нихром (80% никель, 20% хрома), никель, 200, платина, калий, родий, кремний, Sn, серебро,%, натрий, припой (50% свинец, припой, 50% свинец, припой (50%) Мягкая углеродистая сталь, нержавеющая сталь 304, 316, 321, нержавеющая сталь 430, тантал, олово, титан, вольфрам, металл (85% Pb, 15% Sb), уран, цинк, цирконий, 0.5 Sn, Sn, 0.5Pb0.6 0.4PbAluminumBismuthCadmiumGoldLeadLithiumMagnesiumMercuryPotassiumSilverSodiumTinZincAllyl, CastAlumina 96% глинозем 99,9% Алюминий NitrideAluminum силикатного (Лава Класс А) Смола AmberAsbestosAshesAsphaltBakelite, PureBarium ChlorideBeeswaxBoron нитрид (Уплотненный) Кирпич, Общий ClayBrick, Облицовка / Строительство & MortorsCalcium ChlorideCarbonCarnauba WaxCement, Портленд LooseCerafelt ИзоляцияКерамическое волокноМелА угольХромовый кирпичГлинаУголь (антерцит) Угольные гудроныКоксБетон (шлак) Бетон (камень) Кордиерит (AISI Mag 202) ПробкаХлопок (лен, конопля) ДелринБриллиантЗемля, сухая и упакованнаяЭтилцеллюлоза, стекловолокно, стекловолокно, стекловолокно, стекловолокно, стекловолокно, стекловолокно, огнестойкое стекло 243) ГранатСтеклоГранитГрафитЛедИзопрен (Натуральный каучук) ИзвестнякГлитаргМагнезияМагнезитовый кирпичОксид магния (после уплотнения) Оксид магния (до уплотнения) Силикат магнияМраморМаринит I @ 400 ° Fеламин ФормальдегидСлюдаНейлоновое волокно sPaperParaffinPhenolic FormaldehydePhenolic смола, CastPhenolic, лист или труба, LaminatedPitch, HardPlastic- ABSPlastic- AcrylicPlastic- Целлюлоза AcetatePlastic- ацетат целлюлозы ButyratePlastic- EpoxyPlastic- FluoroplasticsPlastic- NylonPlastic- PhenolicPlastic- PolycarbonatePlastic- PolyesterPlastic- PolyethylenePlastic- PolyimidesPlastic- PolypropylenePlastic- PolystyrenePlastic- Поливинилхлорид AcetatePorcelainPotassium ChloridePotassium NitratePotassium Нитратная ванна (твердая) — температура вытяжки 275Калиевая ванна с нитратом калия (твердая) — температура вытяжки 430КварцСоль, резина, синтетика, песок, сухой кремнезем (плавленый), карбид кремния, нитрид силикона, силиконовый каучук, мыльный камень, карбонат натрия, хлорид натрия, ванна цианида натрия, гидроксид натрия, смешанные соли натрия и натрия, гидроксид натрия (75%) 275 вытяжек, натриевая ванна (сплошная) — 430 вытяжек, нитрит натрия, почва, сухая, включая камни, стеатит, камень, камень, песчаник, сахар, сера, тафлон, мочевина, формальдегид, винилиден, винилит, дерево, дуб, сосна, цирконий,
Онлайн-калькулятор: Heat Index
После того, как я создал калькулятор для Humindex — теплового индекса, используемого в Канаде, я решил, что я создам калькулятор для Heat Index, который также используется в США.
Ниже приведены калькуляторы, которые рассчитывают индекс жары с учетом температуры воздуха в тени и относительной влажности. Первые выходные данные приводят в градусах Цельсия для тех, кто привык к градусам Цельсия, а вторые — в градусах Фаренгейта для тех, кто привык к Фаренгейту. Как обычно, все подробности приведены под калькуляторами.
по Цельсию
Тепловой индекс с использованием температуры Цельсия и относительной влажности
Точность вычисления
Цифры после десятичной точки: 1
content_copy Ссылка сохранить Сохранить расширение Виджет
Фаренгейт
Тепловой индекс с использованием температуры по Фаренгейту и относительной влажности
Точность расчета
Цифры после десятичной точки: 1
content_copy Ссылка сохранить Сохранить расширение Виджет
Уравнения
Тепловой индекс (или кажущаяся температура) основан на R.Работа Г. Стедмана, опубликованная в 1979 г. под названием «Оценка влажности, части 1 и 2», является результатом обширных биометеорологических исследований. Первоначально результаты были в таблицах.
Чтобы прийти к уравнению, в котором используются более традиционные независимые переменные, был проведен множественный регрессионный анализ данных из таблиц Стедмана. Это было сделано Лансом П. Ротфусом и описано в его работе «Уравнение теплового индекса» (или «Больше, чем вы когда-либо хотели знать об индексе тепла») в 1990 году.Вы можете найти его, например, здесь.
Итак, последовательность вычислений:
Индекс жары рассчитывается по формуле:
,
где T — температура воздуха в градусах Фаренгейта, а RH — относительная влажность в процентах.Если относительная влажность менее 13% и температура воздуха от 80 до 112F, из HI вычитается следующая поправка:
,
, где ABS — абсолютное значение.Если относительная влажность превышает 85%, а температура воздуха составляет от 80 до 87F, к HI добавляется следующая поправка:
- Если полученный HI меньше 80F, им пренебрегают и рассчитывают новый тепловой индекс с использованием формулы симплера, которая аппроксимирует результаты R.Г. Стедман
Обычно HI рассчитывается по более простой формуле (4), а затем усредняется по температуре воздуха. Если результат больше 80F, следует использовать полные формулы.
Однако эти формулы нельзя использовать для температуры и влажности за пределами диапазона, используемого Steadman. Для температуры она колеблется от 20 до 50 градусов по Цельсию. Что касается влажности, то после того, как график 30 ° C не является линейным, лучше посмотреть его сами, в Steadman, R.G., 1979: Оценка влажности.Часть I, например, здесь.
Источник: Национальная метеорологическая служба
Калькулятор теплового расширения — Хорошие калькуляторы
Этот калькулятор теплового расширения может использоваться для расчета линейного теплового расширения любого материала для определенной начальной длины и изменения температуры.
Инструкции:
- Выберите единицы измерения (британские или метрические)
- Выберите материал или вручную введите коэффициент линейного теплового расширения
- Введите исходную (начальную) длину материала и введите изменение температуры
- Нажав на кнопка «Рассчитать» предоставит изменение длины
* N.B. Используемые коэффициенты теплового расширения сильно зависят от начальных температур и могут претерпевать значительные изменения. Большинство представленных значений относятся к температуре 77 ° F (25 ° C).
Что такое тепловое расширение?
Термическое расширение относится к способу, которым любое данное вещество (газ, жидкость или твердое тело) будет претерпевать изменения формы (объема, площади или длины) при изменении температуры. Тепловое расширение вызывается расширением или сжатием частиц в определенных веществах в зависимости от различных температур.
Существует три формы теплового расширения:
- Линейное тепловое расширение
- Площадь теплового расширения
- Объемное тепловое расширение
Линейное тепловое расширение
Мы ясно видим, что длина объекта зависит от температуры. Если что-то нагреть или охладить, длина изменится пропорционально исходной длине и изменению температуры.
ΔL = α × L × ΔT
с:
ΔL — изменение длины объекта (дюйм, м)
α — коэффициент линейного расширения (1 / ° F, 1 / ° C)
L — исходная длина объекта (дюймы, м)
ΔT — изменение температуры (° F, ° C).
Коэффициент линейного теплового расширения (КТР) зависит от материала, из которого изготовлен объект. Как правило, линейное тепловое расширение наиболее применимо к твердым телам. В CTE используются взаимные единицы измерения температуры (K -1 , ° F -1 , ° C -1 и т. Д.), Представляющие изменение длины на градус на единицу длины, например, дюйм / дюйм / ° F. или мм / мм / ° C. В таблице внизу страницы перечислены коэффициенты пересчета.
Когда мы нагреваем или охлаждаем объект, который не имеет свободы расширения или сжатия (т.е., он закреплен с обоих концов), термическое напряжение может быть достаточно сильным, чтобы вызвать повреждение. Отверстия будут расширяться или сужаться, как и окружающий их материал.
Тепловое расширение может представлять серьезную проблему для проектировщиков в определенных областях, например, при строительстве космических кораблей, самолетов, зданий или мостов, но оно может иметь положительное применение.
Пример: Рассчитайте изменение длины бронзового стержня (L = 5 м, α = 18 × 10 -6 / ° C), если температура повысится с 25 ° C до 75 ° C.
Решение: изменения длины, предусмотренные приведенной выше формулой:
ΔL = 18 × 10 -6 / ° C × 5 × (75 ° C — 25 ° C)
ΔL = 0,0045 м.
сообщить об этом объявлении
Коэффициенты преобразования | ||||||
---|---|---|---|---|---|---|
Преобразовать из | Преобразовать в | Умножить на | ||||
10 -6 / K | 10 -6 10 -6 | | ||||
10 -6 / ° F | 10 -6 / K | 1.8 | ||||
10 -6 / ° F | 10 -6 / ° C | 1,8 | ||||
10 -6 / ° R | 10 -6 / K | 1,8 | ||||
10 -6 / ° C | 10 -6 / ° F | 0,55556 | ||||
10 -6 / ° C | 10 -6 / K | 1 | ||||
ppm / ° C | 10 -6 / K | 1 | ||||
(мкм / м) / ° C | 10 -6 / K | 1 | ||||
(мкм / мкм м) / ° F | 10 -6 / K | 1 |
Калькуляторы — Салах Бенкоричи | Техника пожарной безопасности
Калькуляторы
Калькулятор размера сетки имитатора динамики огня
Бесплатный онлайн-инструмент для создания строки MESH для вставки во входной файл FDS.
Калькулятор размера сетки имитатора динамики пожара
Калькулятор пожарной рампы квадратной формы
Онлайн-инструмент для расчета t-квадрата (квадрат времени, или t 2 ) кривой скорости тепловыделения, которая обычно используется для оценки переходного роста пожара для целей проектирования противопожарной защиты.
Калькулятор пожарной рампы квадратной формы
Калькулятор высоты пламени и средней температуры шлейфа
Онлайн-инструмент для расчета высоты пламени и температуры средней линии факела на основе корреляций Хескестада и Маккаффри.Также рассчитывается характерный диаметр возгорания (Q * ).
Калькулятор высоты пламени и средней линии температуры шлейфа
Переходный нагрев стали в условиях пожара
Онлайн-инструмент для расчета переходных температур стальной балки с сосредоточенными параметрами (защищенной и незащищенной) в условиях пожара с использованием стандартных кривых время-температура.
Переходный нагрев стали в условиях пожара
Калькулятор температуры в камере слоя горячего газа
Онлайн-инструмент для расчета установившейся температуры слоя горячего газа как функции скорости тепловыделения (HRR) в заданное время в отсеке в условиях пожара на основе корреляции Маккаффри, Квинтьера, Харклроуда (MQH).
Калькулятор температуры в камере слоя горячего газа
Балансир для химических уравнений
Рассчитывает сбалансированное химическое уравнение горения с дополнительным выходом сажи или CO.
Балансир для химических уравнений
Генератор мульти-сетки
Этот бесплатный калькулятор построен на основе сценария Рэнди Макдермотта, его можно найти здесь.
Генератор нескольких сеток
Лучистый тепловой поток
Это небольшое приложение помогает измерить коэффициент обзора для прямоугольной формы,
и измерить лучистый тепловой поток.
Радиационный тепловой поток
Калькулятор высоты пламени и температуры
Этот бесплатный калькулятор построен на основе Еврокода 1991-1-2 (приложение C)
, где высота пламени не касается потолка (высота пламени <высота потолка).
Этот инструмент не только помогает определить высоту пламени, но и помогает
для определения температуры факела на разных высотах.
Высота пламени <высота потолка
Калькулятор высоты пламени и теплового потока
Этот бесплатный калькулятор построен на основе Еврокода 1991-1-2 (приложение C)
, где высота пламени касается потолка (высота пламени ≥ высоты потолка).
Этот инструмент не только помогает определить высоту пламени, но и помогает
для определения теплового потока на потолке.
Высота пламени ≥ Высота потолка
Номинальное возгорание
Этот инструмент прогнозирует номинальную температуру возгорания в определенное время.
Номинальное возгорание
Calculator — HeatCalc
Где я могу найти информацию о моем источнике тепла?
Обычно температуру и расход источника тепла можно найти в технических характеристиках первичного генератора тепла (например,г. поршневой двигатель, турбина, печь и т. д.).
В моем листе технических характеристик отображается информация о нагреве только при полной нагрузке моего оборудования, но я обычно работаю при 75% нагрузке — могу ли я использовать те же числа?
Нет, количество тепла обычно зависит от нагрузки на оборудование. Например, мы заметили, что многие поршневые двигатели, работающие при более низких нагрузках, будут иметь относительно постоянную температуру выхлопных газов, но скорость потока выхлопных газов имеет тенденцию масштабироваться с нагрузкой. Таким образом, двигатель, работающий при 75% нагрузке, будет иметь расход примерно 75% от расхода при полной нагрузке.
Достаточно ли одного точного показания температуры и расхода для создания проекта?
Нет. Важно собрать несколько точек данных о том, как работает теплогенератор и как вы планируете использовать его в будущем. Как правило, существуют исторические данные о работе, чтобы предоставить достаточно информации о том, как теплогенератор работал в прошлом. Это хорошая основа для работы, но обязательно учитывайте планы на будущее (например, увеличение нагрузки).
Что делать, если я все еще не знаю этих измерений?
Если вы серьезно относитесь к проекту по утилизации тепла, вероятно, лучше всего нанять консультанта по отходам тепла, у которого есть все инструменты и навыки, чтобы измерить систему за вас.Существуют датчики, которые могут относительно легко собирать данные о температуре (или давлении пара) от источников тепла выхлопных газов и воды. Однако расположение датчиков должно быть выполнено определенным образом, чтобы получить точную информацию. Скорость потока может быть более сложной, особенно с выхлопом.
Почему бы мне не уменьшить выхлоп до температуры окружающей среды, чтобы получить максимальное количество тепла?
При понижении температуры выхлопа ниже определенных температур могут начать образовываться коррозионные кислоты, которые могут разрушиться в теплообменнике.