Механический регулятор давления: Доступ с вашего IP-адреса временно ограничен — Авито

Содержание

как устроен и принцип действия

Эксплуатация бытовой сантехники требует ответственного подхода. Надежную работу обеспечит только выполнение всех рекомендаций производителя.

В большинстве случаев, в паспорте регламентируются оптимальные и предельные значения давления в водоводе. Для обеспечения требуемого режима эксплуатации необходима установка в магистраль регулятора давления воды.

В противном случае, перепады давления и гидроудары приведут к поломке оборудования и появлению протечек.

Регуляторы применяют в разнопрофильных сетях от бытовых до промышленных. Они встраиваются в разводку для орошения, пожаротушения, в системах водозаправочных станций.

Место для их расположения определяют на вводе в стояк или в здание, после насосного оборудования и узлов запорной арматуры.

Регулятор давления любого типа чувствителен к наличию загрязнений и механических примесей в воде. С целью повышения ресурса безотказной работы рекомендуется на входе установить фильтр для очистки воды.

Содержание

Описание регулятора
Принцип работы
Типы конструкций регуляторов
Существующие разновидности
Как настраивается регулятор давления

Описание регулятора

Регулятор давления воды устанавливается в системе водоснабжения с целью стабилизации входящего потока воды и недопущения критического уровня давления.

В основу работы регулятора положен принцип компенсации пружиной или мембраной предельного давления входящего потока. Это происходит за счет выравнивания усилий. Усилия пружины и диафрагмы вступают в противодействие.

В момент забора воды падает давление на выходе. Соответственно, снижается и давление на диафрагму. В результате клапан открывается.

Возрастание давления продолжается до тех пор, пока усилие диафрагмы и сила упругости пружины не будут уравновешены.

 

Давление на входе в клапан не влияет на открытие и закрытие пружинного клапана. Выходное давление сохраняется неизменным не смотря на перепады давления на входе.

Таким образом, удается поддерживать на выходе постоянное давление, что предохраняет внутренние коммуникации от гидроударов и перегрузок. Особенно актуальны перепады давления в сетях, питающихся от насоса.

Металлический корпус устройства имеет два резьбовых выхода для подсоединения к водопроводной системе. В некоторых моделях предусмотрен манометр, отображающий давление в системе. В таких конструкциях также предусмотрен винт регулировки для настройки предельного давления.

Преимущества использования регуляторов давления:

  • Всегда стабильный напор воды на выходе не зависимо от магистрального давления
  • Отсутствие шума, производимого большим напором воды
  • Снижение расхода
  • оберегает внутреннюю сеть от гидроударов
  • Надежная и безопасная работа оборудования, подключенного к водопроводной сети

Принцип работы

Принцип действия регулятора давления может быть:

Обеспечивает постоянное регулирование потока воды. Устанавливается в промышленности и на крупных магистралях.

Предназначен для сетей неравномерного потребления воды. Используется в квартирах и частных домах.

Устройства классифицируются по месту действия:

  • «До регулятора»

Они закрыты, когда нет давления и открываются в случае его возрастания на входе в устройство, тем самым ограничивая предельный показатель.

  • «После регулятора»

Они открыты при отсутствии давления. В случае превышения предельного напора воды на выходе закрываются.

Устройства статического типа работают по принципу «после регулятора», то есть обеспечивают постоянство давления на выходе

Типы конструкций регуляторов

Существует три конструктивных типа регуляторов:

  1. Поршневые

Отличаются простотой конструкции и низкой ценой, поэтому самые распространенные. Расположенный внутри подпружиненный поршень перекрывает проходное отверстие трубопровода. Так обеспечивается постоянство давления на выходе. Диапазон регулирования находится в пределах 1-5 атм.

Поршень не изнашивается, что значительно увеличивает срок эксплуатации такого устройства.

Недостатком конструкции данного типа является движущийся поршень, для которого нужна подача на входе только фильтрованной воды. Вторым недостатком считается быстрый износ подвижных частей, ограничивающих максимальный поток воды.

Возможно появление коррозии на внутренних поверхностях.

  1. Мембранные

Регулирование потока происходит за счет действия подпружиненной мембраны, находящейся в отдельной, изолированной камере. Мембрана открывает и закрывает регулировочный клапан.

Внутренняя полость делится мембраной на две зоны. Одна контактирует с водой, а другая хорошо изолирована. Благодаря этому грязная вода не поступает через слой мембраны.

Конструкция надежна и неприхотлива. Мембранный регулятор имеет защиту от ржавения внутри. При правильной эксплуатации обслуживание не требуется.

Характеризуется широкой зоной регулирования давления и пропорциональностью. Возможно управление скоростью потока от 0,5 до 3 м3/час.

Недостатком является появление на мембране через определенный период эксплуатации трещин, разрывов и расслоения. Следовательно, нужен регулярный контроль состояния мембраны.

Имеет более высокую стоимость.

  1. Проточные

Лабиринт в средине корпуса позволяет осуществлять динамическую регулировку давления. Скорость потока снижается при прохождении разделений и большого числа поворотов.

Регулятор устанавливается в сетях для орошения и полива. В нем нет перемещающихся механизмов, поэтому применяются детали из пластических материалов.

Перед регуляторами данного типа требуется дополнительная установка клапана или регулятора на входном участке. Рабочий диапазон регулирования у устройства – 0,5-3 атм.

Проточный регулятор отличается низкуюой стоимостью.

  1. Электронные

Электронный прибор обеспечивает включение насоса малой мощности в момент забора воды из сети.

Конструкция включает корпус, диафрагму, платы, разъемы для подсоединени. Регулятор оснащен датчиком для защиты от гидроудара и пуска насосного оборудования «в сухую».

Работает устройство бесшумно.

Электронное устройство следует монтировать до первой линии забора. Подводные патрубки обеспечивают удобное встраивание в магистраль трубопровода. Перед пуском насосную емкость заполняют водой.

Заводская настройка электронного регулятора соответствует значению 1,5 бар. Регулируют стартовое значение давления с помощью специальной отвертки, с учетом того, что номинальное значение должно превышать пусковое на 0,8 бар.

Рабочие параметры регуляторов:

  • Максимальное предельное давление, обеспечивающее длительную эксплуатацию. Параметр регламентируется ГОСТ 26349-84.
  • Значение номинального диаметра в соответствии с условным проходов=м водопроводной системы (ГОСТ 28338-89).
  • Пропускная способность устройства, когда сохраняются установленные пределы регулирования, в м3/час.
  • Рабочий диапазон регулирования.
  • Температурный диапазон эксплуатации прибора, влияющий на возможность функционирования в магистралях отопления и подачи горячей воды, а также при низких температурах воздуха.

Существующие разновидности

Регулятор давления применяется в различных сферах хозяйства и в промышленности, поэтому классифицируется по многим параметрам.

 

  1. Производительность
  • Бытовые, до 3 м3/час
  • Коммерческие, от3 до 15 м3/час
  • Промышленные, свыше 15 м3/час

Для бытовых приборов, например, нагревательного бойлера, оптимальный выбор это бытовой регулятор.

  1. По способу подключения

Существуют регуляторы с резьбовым и фланцевым исполнением. Резьбовое присоединение используется на трубопроводахс диаметром трубы 2” (50 мм). Фланцевое соединение применяется на крупных магистралях с большим сечением трубы.

  1. Диапазон регулирования
  • Широкий диапазон регулирования в пределах от 1,5 до 12 бар.
  • Тонкая настройка в диапазоне от 0,5 до 2 бар.
  1. В зависимости от предельного входного давления
  • Для водопроводных систем до 16 бар
  • Для систем до 25 бар
  1. По предельно допустимой температуре рабочей жидкости
  • Для холодной воды с температурой до +40°
  • Для горячей воды с температурой до +70°
  1. По типу установленного фильтрующего элемента
  • Сетки с различным размером ячеек: мельче и крупнее
  • Колбовый фильтр тонкой очистки

Как настраивается регулятор давления

Настройка моделей с манометром не представляет сложности. Вращением винта регулировки обеспечивают необходимые значения на шкале манометра. Средний показатель давления – 3 атм. Винт находится на корпусе и легко перемещается с помощью гаечного ключа.

Настройка ведется согласно паспортным рекомендациям всех установленных в системе приборов. Берутся данные по самому уязвимому оборудованию.

Устройства без манометра не регулирует, а оставляют заводские настройки. Все же рекомендуется дополнительно его приобрести. Манометр позволит выполнить точную настройку и обезопасит от непредвиденных ситуаций.

Последовательность действий:

  • Закрыть все точки забора воды: краны, бойлер, фильтры и другие устройства.
  • Открыть вентиль подачи в квартиру либо здание
  • Установить требуемый показатель давления на манометре
  • Открыть краны в местах потребления воды и проверить показатель давления по манометру.

Допускается колебание значений давления в пределах 10%.

Монтаж регулятора давления в водопроводную сеть стал необходимостью. Это объясняется использованием бытовой техники, чувствительной к избыточному давлению в сети. Регуляторы необходимы на нижних этажах высотных домов. Подвод воды осуществляется снизу и чтобы обеспечить нормальное давление вверху, на нижние этажи подают высокое, что вызывает поломки техники. А при наличии клапана удастся компенсировать перепад давления.

VALTEC | Квартирные регуляторы давления воды

Уважаемые читатели! С момента публикации этой статьи в ассортименте нашей компании, практике применения оборудования, нормативных документах могли произойти изменения. Предлагаемая вам информация полезна, однако носит исключительно ознакомительный характер.

В однозонной схеме водоснабжения многоэтажного здания с количеством этажей Nи высотой этажа Hэ (рис. 1), в соответствии с п.5.2.10 СП 30.13330.2012, гидростатическое давление на уровне водоразборных приборовверхнего этажа не должно быть ниже РN = 20 м вод. ст.

Рис. 1. Распределение давления в водопроводе многоэтажного дома

В этом случае,на уровне приборов n-ого этажа избыточное давление при однозонной схеме водопровода составит:

Pn = PN+(Nn) · Нэ + Δрln + Δpmn,

где Δpln –линейные потери давления в вышележащем участке стояка; Δpmn – потери давления в тройниках на вышележащих этажах.

Если рассмотреть здание высотой 25 этажей, даже пренебрегая линейными потерями давления и потерями в этажных тройниках, то давление на уровне первого этажа превысит 72 м вод. ст. или 7,2 бара. Это при том, что большинство типов квартирной водоразборной арматуры и водопотребляющего оборудования рассчитано на давление не выше 6 бар. В соответствии с п. 5.2.10 СП 30.13330.2012, гидростатическое давление на отметке наиболее низко расположенного санитарно-технического прибора должно быть не более 0,45 МПа или 4,5 бара.

До недавнего времени проблема снижения давления в системе водопровода многоэтажных зданий решалась путем зонирования. То есть здание по высоте разбивалось на зоны, каждая из которых снабжалась по своему стояку (рис. 2).

Рис. 2. Распределение давления в водопроводе многоэтажного дома с зонированием

Такие схемы, действительно, прекрасно справлялись с задачей ограничения давления, но имели весьма существенные недостатки. Во-первых, налицо явная низкая экономичность, так как вместо одного стояка приходится прокладывать два. Во-вторых, такие схемы не решали проблему выравнивания давления по этажам. Гидростатическое давление на вводе в квартиру,расположенную в нижнем ярусе зоны, будет всегда заведомо выше, чем у квартир верхнего яруса. Это значит, что в период пикового водоразбора жители этажей верхнего яруса зоны могут остаться без воды.

Появление на рынке достаточно дешевых, компактных и надежных регуляторов давления позволяет отказаться от низкоэкономичных многозонных схем водоснабжения многоэтажных зданий. Регулятор давления, установленный на вводе водопровода в квартиру, позволяет решить сразу несколько задач:

1. Снижение входного давления до требуемого безопасного уровня на всех этажах здания. Это в свою очередь предохраняет внутриквартирныетрубопроводы, арматуру и оборудование от чрезмерных напряжений, продлевая срок их безаварийной эксплуатации.

2. Обеспечение гарантированного расчетного расхода на всех этажах здания. Выравнивая давление по ярусам водопроводного стояка, квартирные редукторы тем самым ограничивают чрезмерный расход в нижних ярусах стояка, что гарантирует получение расчетного расхода воды жителями вышележащих ярусов. Мощный напор из смесителя вовсе не является благом. При срабатывании на вентильной головке смесителя давления свыше 1,3 бара в седле головки возникают разрушающие кавитационные явления, очень быстро выводящие головку из строя.

3. Снижение шумов как в квартирной системе, так и по стояку в целом. Поскольку стояки, как правило, являются сильными резонаторами, то любые акустические эффекты на любом ярусе стояка распространяются по всему стояку. Здание, в котором установлены квартирные регуляторы давления воды, являются практически бесшумными, поскольку скорость потока в таких системах при грамотном расчете и монтаже не превышает 1,5 м/с.

4. Обеспечение комфортного и безопасного режима работы смесителей.

Несбалансированные перепады давления в стояках горячей и холодной воды приводят к изменению настройки температуры смешанной воды на изливе смесителя. Многие, вероятно, сталкивались с таким фактом, когда комфортная температура воды в смесителе вдруг начинала резко меняться либо в сторону крутого кипятка, либо к абсолютно холодной воде. Наличие на квартирных вводах регуляторов давления позволит избавиться от такого неприятного явления. Отечественная нормативная база, регламентирующая требования к бытовым регуляторам давления воды, в настоящее время представлена следующими основными документами: 

  • ГОСТР 55023 Регуляторы давления квартирные. Общие технические условия
  • ГОСТ 12678 Регуляторы давления прямого действия. Основные параметры.
  • Методические рекомендации по выбору и применению квартирныхрегуляторов давления в жилых и общественных зданиях (НИИ Сантехники).

Основные требования, предъявляемые к редукторам с Dу = 15 мм, изложенные в перечисленных документах, представлены в табл. 1.

Таблица 1. Нормативные требования к квартирным регуляторам давления

Наименование характеристики

Ед.изм.

Значение

1

Условная пропускная способность, не менее

м3

1,6 (ГОСТ Р 55023)

2,5 (ГОСТ 12678)

1,1 (НИИСантехники)

2

Пропускная способность в рабочем диапазоне входных давлений, не менее

м3

1,8

3

Пропускная способность при входных давлениях ниже рабочего диапазона, не менее

м3

0,72

4

Рабочий диапазон давления на входе

бар

3–10

5

Рабочий диапазон расходов

м3

0,18÷1,8

6

Максимальное выходное давление в рабочем диапазоне расходов, не более

бар

2,7±0,2

7

Максимальное выходное давление в безрасходном режиме, не более

бар

3,5

8

Изменение давления при изменении расхода на 0,05 л/с в рабочем диапазоне расходов, не более

бар

0,04

9

Полный ресурс

тыс. циклов

250

10

Уровень шума на расстоянии 2 м от прибора

дБА

40

11

Изгибающий момент на корпус, не менее

Н·м

80

12

Диапазон температур окружающей среды

ºС

5–90

13

Допустимая влажность окружающей среды

%

100

14

Диапазон температур рабочей среды

ºС

5–90

Принцип действия квартирных регуляторов давления основан на уравновешивании усилий, создаваемых давлений на входе и выходе за счет отношенияплощадей, на которые воздействуют эти давления (рис. 3).

Рис. 3. Принцип действия квартирных регуляторов давления

Давление на входе Рвх воздействует на малый поршень, стремясь его открыть. За счет дросселирования в золотнике, связанном с малым поршнем, давление уменьшается до Pвых. Это пониженное давление воздействует на большой поршень, стремясь закрыть золотник. Пружинабольшого поршня поддерживает золотник открытым, когда давление на входе ниже настроечного. Вместо большого поршня может использоваться мембрана. Вноменклатуре компании VALTEC имеются редукторы давления четырех типов. Они широко используются в квартирных узлах ввода водопровода.

Мембранный редуктор VT.085 (рис. 4) применяется в основном в домах повышенной этажности, т.к. рассчитан на номинальное давление 25 бар. Этот редуктор может настраиваться на выходное давление от 1 до 7 бар. Благодаря демпферной камере колебания давления на выходе из редуктора при скачках входного давления не превышают 5 % от настроечного значения. Редуктор поступает в продажу с заводской настройкой на 3 бара.

Рис. 4. Внешний вид и конструкция редуктора VT.085: 1 –корпус, 2 – крышка корпуса, 3 – пробка корпуса, 4 – настроечная втулка, 5 – фиксирующая гайка, 6 – верхняя часть штока, 7 – пружина, 8 – цилиндрическаячасть штока, 9 – мембрана, 10 – распределительное кольцо, 11 – винт золотника с каналом, 12 – золотниковая прокладка, 13 – нижняя часть штока, 14 –уплотнительное кольцо, 15 – демпферная камера 

Рис. 5. Внешний вид и конструкция редуктора давления VT.087

Поршневой редуктор VT.087 (рис.5) используется в квартирных узлах ввода, где требуется подстройка редуктора на требуемое расчетное давление. Редуктор рассчитан на номинальноедавление 16 бар и имеет диапазон настройки от 1 до 4,5 бара. Благодаря своей компактности и надежности этот прибор является лидером продаж среди регулирующей арматуры данного класса.

Поршневой редуктор с манометромVT.088 (рис. 6) поставляется компанией VALTEC специально для московских домостроительных комбинатов, которые устанавливают их в типовых узлахобвязки сантехкабин многоэтажных зданий массовых серий. Требование по наличию манометра на выходном канале редуктора изложено в п.7.1.7. СП 30.13330.2012.Редуктор VT.088 рассчитан на номинальное давление 16 бар и имеет диапазон настройки от 1 до 5,5 бара.

Рис. 6. Внешний вид и конструкция редуктора VT.088: 1 – корпус, 2 – корпус пружинной камеры, 3 – крышка корпуса, 4 – шток, 5 – обойма золотника, 6 – малый поршень, 7 – уплотнительное кольцо малого поршня, 8 – большой поршень, 9 – уплотнительное кольцо, 10 –пружина, 11 – винт настройки, 12 – пробка пружинной камеры, 13 – пробка патрубка манометра

Кран с фильтром и редуктором давления VT.298 (рис. 7) является наиболее оптимальным вариантом для квартирного узла ввода водопровода. Этот сверхкомпактный прибор объединяет в себе шаровой угловой кран, фильтр механической очистки с размером ячеи 300 мкм и поршневой редуктор давления с фиксированнойнастройкой на 3,5 бара.

Рис. 7. Внешний вид и конструкция крана с фильтром и редуктором давления VT.298: 1 – большой полукорпус, 2 – малый полукорпус, 3 – пробка, 4 – заглушка, 5 – шток с поршнем, 6 – прокладка, 7 – уплотнительноекольцо, 8 – уплотнительное кольцо, 9 – золотниковая прокладка, 10 – затвор шаровой, 11 – кольцо седельное, 12 – фильтроэлемент, 13 – пружина

Сравнительные данные по регуляторам давления компании VALTEC представлены в табл. 2.

 Таблица 2. Технические характеристики регуляторов давления VALTEC с Dу 15 мм

Характеристика

Ед.изм

З

начение для артикулов

VT.085

VT.087

VT.088

VT.298

1

Номинальное давление, PN

бар

25

16

16

16

2

Диапазон настройки

бар

17

14,5

15,5

3,5

3

Заводская настройка

бар

3

2

3

3,5

4

Допустимые отклонения от настроечного давления

%

±5

±10

±10

±10

5

Условная пропускная способность

м3

2,5

1,9

1,6

1,8

6

Уровень шума, не более

дБА

30

20

20

40

 

С развернутыми характеристиками регуляторов давления VALTEC,указаниями по их подбору, расчету, монтажу, регулировке и эксплуатации можноознакомиться в технической документации.  

Автор: В.И. Поляков


© Правообладатель ООО «Веста Регионы», 2010

Все авторские права защищены. При копировании статьи ссылка на правообладателя
и/или на сайт www.valtec.ru обязательна.

Как работает регулятор давления? Справочная информация


При использовании механических регуляторов давления постоянно возникают различные эффекты, которые негативно сказываются на конечном результате — получении точного значения давления, установленного пользователем.


Чтобы разобраться в возникающих эффектах, необходимо рассмотреть принцип работы регулятора давления.

Известно, что регулятор состоит из 3 элементов: механизма нагрузки, чувствительного механизма, элемента контроля

  1. Механизм нагрузки
    1. Пружинная нагрузка


      Это наиболее распространённый механизм благодаря своей цене и универсальности.


      При повороте ручки или гайки создается дополнительное сжатие пружины до тех пор, пока давление на выходе не сравняется с требуемым значением.

    2. Купольная нагрузка


      В отличие от пружинной нагрузки, в купольном методе давление создает непосредственную нагрузку на регулятор. Давление на выходе соответствует давлению в куполе.

    3. Пневмопривод


      Этот механизм похож на купольный, но соотношение больше, чем 1:1. Также управляющий газ может быть только инертным, в отличие от купольной нагрузки, где среда может являться управляющим давлением.

    4. Комбинация купольной и пружинной нагрузки


      В данном случае сочетаются два механизма: купольный и пружинный. При таком сочетании создается фиксированная нагрузка пружиной, и добавляется нужное давление под купол.

  2. Чувствительный механизм
    1. Диафрагма


      Диафрагма очень чувствительна к изменениям давления, в особенности изготовленная из полимерных материалов. Но давление на выходе лимитировано из-за возможного разрыва диафрагмы. Диафрагмы Tescom предназначены для давлений до 34.5 бар.

    2. Поршень


      Поршень применяется в случаях, когда давление на выходе превышает допустимо возможное для диафрагм. Поршень имеет чуть худшую чувствительность, чем у диафрагмы, но зато позволяет достигать давления на выходе до 1379 бар.

    3. Сильфон


      Это наиболее чувствительный элемент из всех трех. Но и наиболее дорогой. Из-за чувствительности максимальное давление на выходе ограничено 20.7 барами.

  3. Контрольный элемент
    1. Несбалансированный клапан


      Несбалансированный клапан имеет только одну уплотнительную точку — коническую область на конце клапана. Благодаря этому дизайну клапан закрывается с помощью пружины клапана и давления на входе. В то время как сила пружины постоянна на протяжении всего времени, сила давления меняется. Данный вид клапана имеет негативный эффект — эффект изменения давления на входе из-за изменения давления на входе (decaying inlet characteristics или supply pressure effect). Этот эффект может возникать, когда баллон используется в качестве источника давления для системы заказчика.

    2. Сбалансированный клапан


      Данный вид клапана имеет две точки уплотнения. Одна из них такая же, как и у несбалансированного клапана. Другая же находится рядом с концом штока клапана в зоне P1. Из-за того, что уплотняется одновременно два конца штока клапана, сила от поступающего давления не может закрыть или открыть клапан. Из-за этого поступающее давление имеет слабое влияние на силы, воздействующие на клапан. Также внутри штока есть отверстие, благодаря которому давление P2 является одинаковым на обоих концах клапана.


Как все это работает вместе


Когда система становится открытой, это означает, что в ней возникает поток, в том числе и через регулятор. Когда поток начинается, создается небольшое падение давления в полости регулятора на выходе. Чувствительный элемент-диафрагма, чувствует падение давления и сдвигается вниз из-за дисбаланса между силой давления на выходе и силой пружинной нагрузки. В этот момент сила пружины выше силы давления на выходе. Из-за этого диафрагма двигается вниз, вынуждая клапан сдвигаться из своего седла, и позволяя газу через открытое седло течь в полость регулятора на выходе.


Клапан остается открытым, выравнивая давление на выходе и установленное давление. До тех пор пока в системе есть ток, регулятор с пружинной нагрузкой не может достичь установленного давления. Но он будет пытаться это сделать. Разницу между установочным давление и давлением, получаемом на выходе регуляторе, при потоке в системе называют DROOP.


Когда система становится замкнутой или в ней прекращается ток, давление на выходе становится чуть выше, чем установочное на 0,07–0,21 бар. Это давление необходимо, чтобы заставить клапан прочно закупорить седло и обеспечить надежное уплотнение. Это давление называется LOCK UP. И это нормально для всех редукторов.


Обзор возможных отклонений в работе механических регуляторов давления читайте в следующей статье.

Принцип работы и устройство регулятора давления топлива

В процессе работы инжекторной системы питания, порция топлива подмешивается в проходящий поток воздуха (или непосредственно впрыскивается в цилиндры). Но чтобы форсунки смогли впрыснуть бензин нужно, чтобы он находился под давлением. Нагнетание топлива осуществляется электробензонасосом.

При этом создаваемое внутри топливной системы давление должно находится в строго заданном диапазоне. И поддерживает его в требуемом значении регулятор давления топлива, используемый в конструкции инжекторной системы.

Места установки

Место установки этого элемента зависит от конструктивных особенностей системы питания. В большинстве случаев на авто используются системы с рециркуляцией топлива. Ее особенность сводится к тому, что лишнее топливо, которое уже поступило на форсунки, сливается обратно в бак.  В такой системе регулятор устанавливается на топливной рампе (где и находится топливо перед поступлением на форсунки).

Но есть и системы, у которых рециркуляция не предусмотрена конструктивно, хотя и встречаются они редко. Поскольку сброса части бензина из рампы нет, то регулировка давления в системе осуществляется до того, как топливо попадет в рампу. В таких системах этот элемент устанавливается сразу за топливным насосом. Он может быть врезанным в топливную магистраль или же располагаться в баке.

Особенности конструкции

Регулятор давления бензина – один из немногих элементов системы, который не управляется с электронного блока. Этот узел – полностью механический и его функционирование основано на перепадах давления. Хотя в системах без рециркуляции срабатыванием датчика заведует ЭБУ. Поскольку встречаются они не часто, то далее рассматривать такие узлы мы не будем.

Стоит отметить, что РТД работает не в строго заданных значениях, он подстраивается под режим работы двигателя. То есть, при надобности он увеличивает или уменьшает давление в системе, чтобы обеспечить оптимальное смесеобразование.

Конструктивно этот элемент очень прост и состоит из корпуса, на котором расположены штуцеры и выводы для подсоединения к системе питания. Внутри этот корпус разделен мембраной на две камеры – топливную и вакуумную.

К топливной полости подходят для вывода – один используется для подачи топлива в камеру, а второй ведет на магистраль слива бензина в бак (обратку). Но второй канал закрыт клапаном, который связан с мембраной.

Со стороны вакуумной полости установлена пружина, которая воздействует на мембрану, обеспечивая перекрытие канала слива клапаном. Эта камера посредством штуцера трубкой соединена с впускным коллектором.

Работа регулятора на разных режимах

Принцип работы РТД

Если рассмотреть упрощенно принцип действия, то он достаточно прост. Насос закачивает топливо в рампу, из которой оно попадает также и в топливную камеру регулятора. Как только сила давления превысит жесткость пружины, мембрана начинает перемещаться в сторону вакуумной полости, увлекая за собой клапан. В результате канал слива открывается и часть бензина стекает в бак, при этом давление в рампе падает. Из-за этого пружина возвращает клапан с мембраной на место, и обратный канал закрывается.

Но как уже упоминалось, РДТ подстраивается под режим работы мотора. И делает это он за счет разрежения во впускном коллекторе. Чем больше будет это разрежение, тем сильнее будет его воздействие на мембрану. По сути, создаваемый вакуум создает противодействующее усилие пружине.

На деле все выглядит так: для работы мотора на холостом ходу увеличение количества топлива не нужно, поэтому и не требуется и повышенного давления.

На этом режиме работы дроссельная заслонка закрыта, поэтому во впускном коллекторе воздуха недостаточно и создается разрежение. А поскольку вакуумная камера  связана с коллектором патрубком, то вакуум создается и в ней. Под воздействием разрежения мембрана давит на пружину, поэтому для открытия клапана нужно меньше давления бензина.

При нагрузке же, когда дроссельная заслонка открыта, разрежения практически нет, из-за чего мембрана не участвует в создании усилия на пружину, поэтому давления требуется больше. Таким образом этот элемент функционирует в системе питания в зависимости от режима работы мотора.

Видео: Регулятор давления топлива. Плохо едет, плохо заводится.

Признаки неисправности. Основные поломки РТД

Несмотря на то, что этот механизм с виду незначительный элемент, от его работы в значительной степени зависит функционирование силовой установки. Все просто – если не будет обеспечиваться требуемое давление, в цилиндры будет подаваться меньшее количество бензина чем требуется.

Признаки неисправности

  • плохо заводиться;
  • глохнет на холостом ходу;
  • не развивает требуемой мощности;
  • дергается при наборе скорости;
  • обороты коленчатого вала «плавают»;

При наличие этих признаков существует вероятность, что неисправен РТД. Но поскольку такие симптомы могут давать также проблемы с электробензонасосом, фильтром или форсунками, то следует сначала удостовериться, что неисправен именно регулятор давления топлива.

В целом, из-за простоты конструкции, этот элемент выходит из строя очень редко. Основными его неисправностями являются снижение жесткости пружины (из-за чего давление в системе не поднимается до нормы), закупорка каналов и потеря герметичности корпуса. А поскольку регулятор считается не разборным, то в случае возникновения проблем он просто заменяется, тем более, что стоит он недорого.

Ещё кое-что полезное для Вас:

Проверка работоспособности. Замена

Видео: Замена РДТ на ваз 2114

Проверить работоспособность узла можно при помощи манометра. И сделать это очень просто. На топливных рампах имеется штуцер сброса давления в системе, который и используется для проверки создаваемого давления в системе.

Для примера, рассмотрим, как проверяется регулятор давления на примере ВАЗ-2110 с инжектором. Все, что потребуется для проверки – это манометр, маслостойкий шланг и два хомута. А далее:

Так выкручивается золотник из штуцера

  1. Снимаем защитный колпачок со штуцера сброса давления на рампе.
  2. Аккуратно и неспешно колесным колпачком отворачиваем немного золотник, выжидаем сброса давления и полностью его выкручиваем.
  3. На штуцер надеваем подготовленный шланг и фиксируем его хомутом.
  4. Второй конец шланга соединяем с манометром и тоже зажимаем хомутом.
  5. Заводим двигатель и устанавливаем малые обороты (холостой ход).
  6. Смотрим на манометр. Если насос, форсунки и фильтр в нормальном состоянии, то показания манометра должны составлять 2,8-3,2 Атм.
  7. Стягиваем со штуцера вакуумной камеры регулятора патрубок, ведущий к коллектору. Это действие должно сопровождаться повышением давления на 0,2-0,7 Атм.

Если есть хоть какое-то несоответствие, то необходимо искать причину. К примеру, насос не смог обеспечить необходимое давление. И лучше всего начать с регулятора давления, поскольку добраться до него не сложно.

Из инструментов для снятия регулятора на ВАЗ-2110 потребуется ключ на 24 и шестигранник на 5.

Регулятор снимается так:

  1. Откручиваем ключом на 24 гайку трубки слива бензина в бак.
  2. Шестигранником выкручиваем два болта крепления элемента.
  3. Аккуратно его извлекаем.
  4. Устанавливаем на место новый элемент.
  5. Делаем замеры давления.

Если после проделанной процедуры показания замеров не улучшились, следует проверять работоспособность остальных элементов системы.

Напоследок отметим, что регуляторы давления топлива используются не только инжекторных моторах. В дизельных агрегатах с системой питания Common Rail он тоже используется. Только в этой системе регулятор – электромагнитный и его работой управляет ЭБУ.

Неисправность Регулятора Давления Топлива. 4 Признака

Неисправности регулятора давления топлива приводят к тому, что двигатель запускается с трудом, имеет «плавающие» холостые обороты, машина теряет динамические характеристики, иногда с топливных шлангов подтекает топливо. Как правило, устанавливается регулятор давления топлива (сокращенно — РДТ) на топливной рампе и представляет собой вакуумный клапан. В некоторых моделях автомобилей РДТ врезается в топливный шланг обратной подачи топливной системы. Чтобы определить что неисправность топливной системы заключается в неисправном регуляторе давления необходимо провести ряд несложных проверок.

Содержание:

Где находится регулятор давления топлива

Чтобы найти место установки регулятора давления топлива, разберемся что он собой представляет и для чего нужен. Это поможет в дальнейших поисках и диагностике.

Первое, что нужно знать — бывает два основных типа РДТ — механический (старого образца) и электрический (нового образца). В первом случае — это вакуумный клапан, задача которого заключается в перепускании излишков топлива при чрезмерном давлении обратно в топливный бак через соответствующий шланг. Во втором — это датчик давления топлива, который передает к ЭБУ соответствующую информацию.

Как правило, регулятор давления топлива находится непосредственно на топливной рампе. Другой вариант его размещения — топливный шланг обратной подачи системы питания. Еще существует вариант — расположение регулятора непосредственно в топливном баке на модуле насоса. В таких системах отсутствует шланг обратной подачи топлива за ненадобностью. Подобная реализация имеет несколько преимуществ, среди которых упрощение конструкции (отсутствие лишнего трубопровода), лишнее топливо не попадает в подкапотное пространство, топливо меньше нагревается и не так испаряется.

Как работает регулятор давления топлива

Конструкционно клапан старого образца (устанавливаемых на бензиновые авто) имеет собственный корпус, внутри которого находятся клапан, мембрана и пружина. В корпусе имеется три вывода для топлива. Через два из них бензин проходит через регулятор давления, а третий вывод непосредственно связан со впускным коллектором. На низких (в том числе холостых) оборотах двигателя давление топлива в системе невелико и оно все уходит в мотор. При повышении оборотов соответствующее давление увеличивается, в коллекторе, то есть, на третьем выводе РДТ создается разрежение (вакуум), которое при определенном значении преодолевает силу сопротивления его пружины. Таким образом создается движение мембраны и открывание клапана. Соответственно, излишнее топливо получает доступ ко второму выводу регулятора и через обратный шланг уходит обратно в топливный бак. По причине описанного алгоритма нередко регулятор давления топлива называют еще обратным клапаном.

Что касается датчика давления топлива, то он немного сложнее. Так, он состоит из двух частей — механической и электрической. Первая часть — это металлическая мембрана, которая прогибается под воздействием усилия, вызванного давлением в топливной системе. Толщина мембраны зависит от давления, на которое рассчитана топливная система. Электрическая часть датчика — это четыре тензорезистора, соединенных по схеме «мостик Уинстона». На них подается напряжение, и чем больше изгибается мембрана, тем выходное напряжение от них будет больше. И этот сигнал подается на ЭБУ. А в результате электронный блок управления подает соответствующую команду на насос с тем, чтобы он тот подавал лишь необходимое в данный момент количество топлива.

Дизельные двигатели имеют регулятор давления топлива немного другой конструкции. В частности, они состоят из соленоида (катушки) и штока, который уперт в шарик для перекрытия обратной подачи. Сделано это по той причине, что дизельный двигатель в процессе своей работы очень сильно вибрирует, что сказывается на износе классического (бензинового) регулятора топлива, то есть, происходит частичная и даже полная компенсация гидравлических колебаний. Однако место установки его аналогичное — в топливной рампе двигателя. Другой вариант — на корпусе топливного насоса.

Признаки неисправности регулятора давления топлива

Есть пять основных симптомов неисправности регулятора давления топлива (обоих типов), по которым можно судить о полном или частичном выходе из строя этого важного узла. Причем указанные ниже признаки характерны для автомобилей как с бензиновым, так и дизельным двигателем. Однако стоит оговориться, что перечисленные ситуации могут быть признаками поломки и других узлов мотора (топливный насос, забитый топливный фильтр), поэтому желательно выполнять комплексную диагностику, чтобы точно определить его работоспособность. Так, признаки неисправности регулятора давления топлива следующие:

  • Трудный запуск двигателя. Обычно это выражается в долгом кручении стартером при выжатой педали акселератора. Причем это признак характерен при любых внешних погодных условиях.
  • Двигатель глохнет на холостых оборотах. Для поддержания его работы водитель обязан постоянно подгазовывать. Другой вариант — при работе двигателя на холостом ходу обороты обычно «плавающие», нестабильные, вплоть до полной остановки мотора.
  • Потеря мощности и динамики. Проще говоря, машина, «не тянет», особенно при езде в гору и/или в загруженном состоянии. Также теряются динамические характеристики автомобиля, он плохо разгоняется, то есть, при попытке разогнаться происходит глубокий провал оборотов на их высоких значениях.
  • Из топливных шлангов (рампы) подтекает топливо. При этом замена шлангов (хомутов) и других близлежащих элементов не помогает.
  • Перерасход топлива. Его значение будет зависеть как от факторов поломки, так и от мощности двигателя.

Соответственно, при появлении хотя бы одного из перечисленных выше признаков необходимо выполнить дополнительную диагностику, в том числе при помощи электронного сканера ошибок имеющихся в памяти ЭБУ.

Ошибка регулятора давления топлива

Диагностические ошибки регулятора давления топлива

В современных автомобилях в качестве регулятора устанавливается датчик давления топлива. При его частичном или полном выходе из строя в памяти электронного блока управления двигателем формируются одна или несколько ошибок, связанные с этим узлом. При этом на приборной панели активируется лампочка неисправности двигателя.

Когда существует неисправность ДРТ, то чаще всего водитель сталкивается с ошибками под номерами p2293 и p0089. Первая имеет название «регулятор давления топлива — механическая неисправность». Вторая — «регулятор давления топлива неисправен». У некоторых автовладельцев при выходе соответствующего регулятора из строя в памяти ЭБУ формируются ошибки: p0087 «давление, измеренное в топливной рампе, слишком низкое по отношению к требуемому» или p0191 «регулятор давления топлива или датчик давления». Внешние признаки указанные ошибок те же, что общие признаки выхода из строя регулятора давления топлива.

Узнать есть ли такой код ошибки в памяти ЭБУ поможет недорогой автосканер Scan Tool Pro Black Edition. Это устройство совместимо с большинством всех современных автомобилей имеющих разъем OBD-2. Достаточно при себе иметь смартфон с установленным диагностическим приложением.

Подключаться к блоку управления авто можно как по Bluetooth так и Wi-Fi. Scan Tool Pro имея 32-х разрядный чип и без проблем присоединиться, считает и сохранит все данные датчиков не только в двигателе, но и в коробке передач, трансмиссии, или вспомогательных системах ABS, ESP и т.д. Также с его помощью можно в режиме реального времени следить за показаниями давления топлива которые он передает на ECM автомобиля проделывая при этом ряд проверок.

Проверка регулятора давления топлива

Проверка работоспособности топливного регулятора давления будет зависеть от того, механический он или электрический. Старый регулятор бензинового двигателя проверить достаточно просто. Действовать нужно по следующему алгоритму:

  • найти в подкапотном пространстве шланг обратной подачи топлива;
  • запустить двигатель и дать поработать ему около одной минуты, чтобы он был уже не холодный, но и еще и недостаточно горячий;
  • с помощью плоскогубцев (аккуратно, чтобы не повредить его!!!) пережать указанный выше шланг обратной подачи топлива;
  • в случае, если двигатель до этого «троил» и плохо работал, а после пережатия шланга заработал хорошо — значит, вышел из строя именно регулятор давления топлива.

Надолго пережимать резиновые топливные шланги нельзя, поскольку в таких условиях создается дополнительная нагрузка на топливный насос, что может в долгосрочной перспективе вывести его из строя!

Как определить работоспособность на инжекторе

В современных инжекторных бензиновых двигателях, во-первых, вместо резиновых топливных шлангов устанавливают металлические трубочки (в связи с высоким давлением топлива и для надежности и долговечности), а во-вторых, монтируют электрические датчики на основе тензорезисторов.

Соответственно, проверка датчика давления топлива сводится к проверке выходного напряжения от датчика при изменении подводимого давления топлива, проще говоря, увеличению/уменьшению оборотов двигателя. Что и даст понять вышел из строя регулятор давления топлива или нет.

Другой метод проверки — с помощью манометра. Так, манометр подсоединяют между топливным шлангом и штуцером. Перед этим обязательно нужно отсоединить вакуумный шланг. Также предварительно необходимо узнать, какое нормальное давление топлива должно быть в двигателе (будет отличаться у карбюраторных, инжекторных и дизельных моторов). Обычно у инжекторных двигателей соответствующее значение находится в диапазоне приблизительно 2,5…3,0 атмосфер.

Нужно запустить двигатель и убедиться по показаниям на манометре, что давление соответствует норме. Далее необходимо немного погазовать. При этом давление немного падает (на десятые доли атмосферы). После чего давление восстанавливается. Далее нужно с помощью тех же плоскогубцев пережать обратный топливный шланг, в результате чего давление возрастет примерно до 2,5…3,5 атмосфер. Если этого не произошло — регулятор вышел из строя. Помните, что на долго пережимать шланги нельзя!

Как проверить на дизеле

Проверка регулятора давления топлива на современных дизельных системах Common Rail ограничивается лишь измерением внутреннего электрического сопротивления индуктивной катушки управления датчика. В большинстве случаев соответствующее значение находится в районе 8 Ом (точное значение необходимо уточнять в дополнительных источниках — мануалах). Если значение сопротивления заведомо занижено или завышено — значит, регулятор вышел из строя. Более детальная диагностика возможна лишь в условиях автосервиса на специализированных стендах, где проверяются не только датчики, но и вся система управления топливной системой Common Rail.

Причины неисправности регулятора топлива

На самом деле причин, по которым вышел из строя регулятор давления топлива не так много. Перечислим их по порядку:

  • Естественный износ. Это наиболее распространенная причина выхода из строя РДТ. Как правило, это случается при пробеге автомобиля около 100…200 тысяч километров. Механическая неисправность регулятора давления топлива выражается в том, что утрачивает эластичность мембрана, может подклинивать клапан, со временем ослабевает пружина.
  • Бракованные детали. Встречается это не так часто, однако зачастую на изделиях отечественных производителей изредка попадается брак. Поэтому желательно покупать оригинальные запчасти импортных производителей или проверять их перед покупкой (обязательно обращать внимание на гарантию).
  • Некачественное топливо. В отечественном бензине и дизельном топливе, к сожалению, нередко допускается чрезмерное присутствие влаги, а также мусора и вредных химических элементов. Из-за влаги на металлических элементах регулятора могут появиться очаги ржавления, которые со временем распространяются и мешают его нормальной работе, например, ослабевает пружина.
  • Забитый топливный фильтр. Если в топливной системе присутствует большое количество мусора, то приведет к засорению в том числе и РДТ. Чаще всего в таких случаях начинает подклинивать клапан, либо изнашиваться пружина.

Как правило, если регулятор давления топлива неисправен, то его не ремонтируют, а меняют на новый. Однако, прежде чем выбрасывать, в некоторых случаях (особенно если речь ), можно попробовать почистить РДТ.

Чистка регулятора топлива

Перед тем как заменить его на новый аналогичный элемент, можно попробовать почистить его, благо процедура эта простая и доступная практически каждому автовладельцу в гаражных условиях. Зачастую для этого пользуются специальными очистителями карбюраторов или карбклинерами (некоторые автолюбители пользуются для аналогичных целей известным средством WD-40).

Чаще (и доступнее) всего — почистить фильтрующую сеточку, которая находится на выводном штуцере регулятора давления топлива. Через нее топливо подается непосредственно в топливную рампу. Со временем она засоряется (особенно, если в бак автомобиля регулярно заливается некачественное топливо с механическими примесями, мусором), что приводит к снижению пропускной способности как регулятора в частности, так и всей топливной системы в целом.

Соответственно, чтобы ее почистить, необходимо демонтировать регулятор давления топлива, разобрать его, и с помощью очистителя избавиться от отложений как на сетке, так и внутри корпуса регулятора (при возможности).

Чтобы избежать засорения регулятора давления топлива, необходимо менять топливный фильтр автомобиля в соответствии с регламентом.

Грязная сетка регулятора топлива

После выполнения чистки сетки и корпуса регулятора их желательно принудительно просушить при помощи воздушного компрессора перед установкой. Если компрессора нет — поместить их в хорошо проветриваемое теплое помещение на время, достаточное для полного испарения влаги с их наружных и внутренних поверхностей.

Еще один экзотический вариант чистки — использование ультразвуковой установки на автосервисе. В частности, ими пользуются для качественной очистки форсунок. Ультразвуком можно «отмыть» мелкие, сильно въевшиеся, загрязнения. Однако тут стоит взвешивать стоимость процедуры очистки и цену новой сеточки или регулятора давления топлива в целом.

Спрашивайте в комментариях. Ответим обязательно!

Регуляторы давления газа (редукторы) мембранные




   Механические регуляторы давления газа типа РДМ предназначены для редуцирования и автоматического поддержания заданного давления газов и газовых смесей в линиях подачи газа в технологическое оборудование при повышенных требованиях к чистоте газовой системы.

  • Газы:
    • чистые и особочистые газы
    • нейтральные, агрессивные, токсичные, взрыво- и пожароопасные газы


РДМ-21 — специализированный регулятор давления, разделение внутреннего объема регулятора и внешней среды осуществляется металлической мембраной, защищенной фторопластовой пленкой. РДМ-21 рекомендуется для работы с такими высоко агрессивными газами, как сухой хлористый водород (HCl).

  • Входное и выходное давления, расход газа: 16,0 МПа / 0,02-0,04 МПа / 1800 нл/ч


РДМ-25 и РДМ-32 — универсальные регуляторы давления для чистых газов в системах технологического газоснабжения с мембранами из нержавеющей стали. Эти регуляторы имеют модификации для установки на газовые

баллоны и опции подключения манометров.

  • Входное и выходное давления, расход газа РДМ-25Н: 4,0 МПа / 0,2-0,6 МПа / 3600 нл/ч
  • Входное и выходное давления, расход газа РДМ-25В: 16,0 МПа / 0,2-1,0 МПа / 3600 нл/ч
  • Входное и выходное давления, расход газа РДМ-32: 1,6 МПа / 0,2-0,8 МПа / 20000 нл/ч


РДМ-23 (с предохранительным клапаном) и РДМ-24 — регуляторы давления для чистых газов в системах технологического газоснабжения с резиновыми мембранами.

  • Входное и выходное давления, расход газа РДМ-23: 16,0 МПа / 0,002-0,3 МПа / 1800 нл/ч
  • Входное и выходное давления, расход газа РДМ-24: 0,6 МПа / 0,02-0,2 МПа / 1800 нл/ч


*Обозначения штуцеров на «входе-выходе» РДМ (см.: страница «Соединения»)


Прим.: Подсоединение к трубопроводу регуляторов РДМ осуществляется с помощью неразъемных сварных или разъемных штуцерных соединений. При заказе регулятора вид соединения указывается в шифре модели регулятора (например, «вход-выход»: ТМ.4-ТМ.4). Монтажные комплекты при заказе необходимо указывать отдельно.

СХЕМЫ СОЕДИНЕНИЙ (вид сверху)



























ПАРАМЕТРЫ

РДМ-32

РДМ-25Н

РДМ-25В

РДМ-24

РДМ-23

РДМ-21

Диаметр условного прохода Ду (DN), мм

10

4

4

4

4

4

Пропускная способность Кv, м3/час, не менее

1,0

0,15

0,15

0,1

0,1

0,15

Максим. входное давление (изб.), МПа

1,6

4,0

16,0

0,6

16,0

16,0

Рабочее давление на выходе (изб.), МПа

0,2-0,8

0,2-0,6

0,2-1,0

0,02-0,2

0,002-0,3

0,02-0,04

Расход газа при рабочем давлении, нл/час

20000

3600

3600

1800

1800

1800

Давление срабатывания предохранительного клапана, МПа





0,5…0,6


Натекание — изнутри наружу (по Не), Па*м3/с, не хуже

1,3*10-9

1,3*10-9

1,3*10-9

1,3*10-9

1,3*10-9

1,3*10-9

Натекание — снаружи внутрь (по Не), Па*м3/с, не хуже

1,3*10-9

1,3*10-9

1,3*10-9

1,3*10-9

1,3*10-9

1,3*10-9

Натекание — через закрытый затвор (по Не), Па*м3/с, не хуже

1,3*10-9

1,3*10-9

1,3*10-9

1,3*10-9

1,3*10-9

1,3*10-9

Диапазон рабочих температур, оС

10…50

10…50

10…50

10…50

10…50

10…50

Климатическое исполнение (ГОСТ 15150-69)

УХЛ4.2

УХЛ4.2

УХЛ4.2

УХЛ4.2

УХЛ4.2

УХЛ4.2

Материалы, контактирующие с рабочей средой

нерж.ст.

нерж.ст.

нерж.ст.

резина

резина

нерж.ст.

фторопл.

фторопл.

фторопл.

резина

резина

фторопл.

нерж.ст.

нерж.ст.

нерж.ст.

нерж.ст.

нерж.ст.

нерж.ст.

резина

резина

резина

резина

резина

резина

Подключение к трубопроводу — виды соединений

ТМ (аналог VCR© Swagelok©), МК (уплотнение металл. конусом), ТР (аналог VCO© Swagelok©) и др. — см.: страница «Штуцерные соединения»)

Опция — манометр

+

+

+




Габаритн.размеры (ДхШхВ) для соединения «ТМ.Г — ТМ.В»

57

44,2

50

97

97

160

65

48

46

55

91

108

165

63

94

110,5

110,5

139

Вес нетто, кг, не более

2,0

1,2

1,2

0,8

0,8

2,3
  РДМ-25 и РДМ-32: регуляторы давления газа с металлической мембраной для чистых газов

Регулятор давления газа механический РДМ-24 в Москве (Регуляторы и редукторы давления для газов)

Регулятор давления газа РДМ-24 — является механическим устройством и предназначен для снижения и поддержания заданного давления газов и их смесей в газовых системах.

Разделение внутреннего объема и внешней среды осуществляется резиновой мембраной.

Особенности применения: РДМ-24 рассчитан на применение в средах с нейтральными и агрессивными газами которые не вызывают коррозию нержавеющей стали 12Х18Н10Т, резины ИРП-1345 или 51-1481.

Принцип действия РДМ-24 основан на изменении проходного сечения затвора, через который проходит поток газа при изменении входного давленияи величины расхода газа. Чувствительным элементом регулятора является мембрана, находящаяся в динамическом равновесии под действием равных и противоположных сил — пружины, действующей на внешнюю сторону мембраны, и силы избыточного давления газа, действующей на внутреннюю сторону мембраны.
Технические характеристики
Диаметр условного прохода, мм
4
Давление на входе, МПа
0,06…0,6
Давление на выходе, МПа
0,02…0,2
Расход газа, л/ч
3600
Натекание гелия через затвор, м3.Па/с
1,3.10-9
Утечки гелия в окружающую среду, м3.Па/с
1,3.10-9
Натекание гелия из окружающей среды во внутреннюю полость при ее вакуумировании, м3.Па/с
1,3.10-9
Материал, контактирующий с рабочей средой
сталь 12Х18Н10Т,

резина ИРП-1345

резина 51 -1481 (для NH3)

Наработка на отказ, ч
10 000
Габаритные размеры (монтажный комплект М1),(ДхШхВ, мм
97 х 55 х 110,5
Масса, кг
0,8
При возмущениях выходного давления, вызванных изменением расхода газа, мембрана перемещается в направлении действия большей силы и перемещает затвор, изменяя проходное сечение и, тем самым, расход газа. Это приводит к изменению давления на мембрану, равновесие сил восстанавливается, и давление на выходе поддерживается постоянным.

Основы регуляторов давления

Вы можете найти доступные регуляторы давления Beswick в нашем онлайн-каталоге: Нажмите здесь, чтобы увидеть регуляторы давления

Регуляторы давления

используются во многих бытовых и промышленных применениях. Например, регуляторы давления используются в газовых грилях для регулирования пропана, в домашних отопительных печах для регулирования природного газа, в медицинском и стоматологическом оборудовании для регулирования подачи кислорода и анестезиологических газов, в системах пневматической автоматизации для регулирования сжатого воздуха, в двигателях для регулирования подачи топлива и в топливных элементах для регулирования водорода.Как видно из этого частичного списка, регуляторы имеют множество применений, но в каждом из них регулятор давления выполняет одну и ту же функцию. Регуляторы давления снижают давление на входе (или на входе) до более низкого давления на выходе и работают для поддержания этого давления на выходе, несмотря на колебания давления на входе. Снижение давления на входе до более низкого давления на выходе — ключевая характеристика регуляторов давления.

При выборе регулятора давления необходимо учитывать множество факторов.Важные соображения включают: диапазоны рабочего давления для входа и выхода, требования к потоку, жидкость (газ, жидкость, токсичность или воспламеняемость?), Ожидаемый диапазон рабочих температур, выбор материалов для компонентов регулятора, включая уплотнения, а также в качестве ограничений по размеру и весу.

Материалы, используемые в регуляторах давления

Доступен широкий спектр материалов для работы с различными жидкостями и рабочими средами. Обычные материалы компонентов регулятора включают латунь, пластик и алюминий.Также доступны различные марки нержавеющей стали (например, 303, 304 и 316). Пружины, используемые внутри регулятора, обычно изготавливаются из музыкальной проволоки (углеродистой стали) или нержавеющей стали.

Латунь подходит для большинства обычных применений и обычно экономична. Когда речь идет о весе, часто указывается алюминий. Пластик рассматривается, когда в первую очередь важна низкая стоимость или требуется одноразовый предмет. Нержавеющие стали часто выбирают для использования с агрессивными жидкостями, использования в агрессивных средах, когда важна чистота жидкости или когда рабочие температуры будут высокими.

Не менее важна совместимость материала уплотнения с жидкостью и с диапазоном рабочих температур. Буна-н — типичный уплотнительный материал. Некоторые производители предлагают дополнительные уплотнения, в том числе: фторуглерод, EPDM, силикон и перфторэластомер.

Используемая жидкость (газ, жидкость, токсичная или легковоспламеняющаяся)

Прежде чем выбирать лучшие материалы для вашего применения, следует учитывать химические свойства жидкости. Каждая жидкость будет иметь свои уникальные характеристики, поэтому необходимо тщательно выбирать материалы корпуса и уплотнения, которые будут контактировать с жидкостью.Части регулятора, контактирующие с жидкостью, известны как «смачиваемые» компоненты.

Также важно определить, является ли жидкость легковоспламеняющейся, токсичной, взрывоопасной или опасной по своей природе. Регулятор без сброса давления предпочтителен для использования с опасными, взрывоопасными или дорогостоящими газами, поскольку конструкция не обеспечивает сброс избыточного давления на выходе в атмосферу. В отличие от регулятора без сброса давления, регулятор сброса (также известный как саморазгрузочный) предназначен для сброса избыточного давления на выходе в атмосферу.Обычно для этой цели сбоку на корпусе регулятора имеется вентиляционное отверстие. В некоторых специальных конструкциях вентиляционное отверстие может иметь резьбу, и любое избыточное давление может быть сброшено из корпуса регулятора через трубки и выпущено в безопасной зоне. Если выбран этот тип конструкции, излишки жидкости должны удаляться соответствующим образом и в соответствии со всеми правилами техники безопасности.

Температура

Материалы, выбранные для регулятора давления, не только должны быть совместимы с жидкостью, но также должны работать должным образом при ожидаемой рабочей температуре.Основная проблема заключается в том, будет ли выбранный эластомер правильно функционировать в ожидаемом диапазоне температур. Кроме того, рабочая температура может влиять на пропускную способность и / или жесткость пружины в экстремальных условиях эксплуатации.

Рабочее давление

Давление на входе и выходе — важные факторы, которые следует учитывать перед выбором лучшего регулятора. Необходимо ответить на следующие важные вопросы: каков диапазон колебаний давления на входе? Какое необходимое давление на выходе? Какое допустимое отклонение давления на выходе?

Требования к потоку

Какая максимальная скорость потока требуется приложению? Насколько различается скорость потока? Требования к переносу также являются важным фактором.

Размер и вес

Во многих высокотехнологичных приложениях пространство ограничено, и вес является важным фактором. Некоторые производители специализируются на миниатюрных компонентах, и с ними следует консультироваться. Выбор материала, особенно компонентов корпуса регулятора, повлияет на вес. Также внимательно изучите размеры порта (резьбы), стили регулировки и варианты монтажа, так как они будут влиять на размер и вес.

Регуляторы давления в работе

Регулятор давления состоит из трех функциональных элементов

  1. ) Элемент понижения или ограничения давления.Часто это подпружиненный тарельчатый клапан.
  2. ) Чувствительный элемент. Обычно это диафрагма или поршень.
  3. ) Элемент опорной силы. Чаще всего весна.

Во время работы опорная сила, создаваемая пружиной, открывает клапан. Открытие клапана создает давление на чувствительный элемент, который, в свою очередь, закрывает клапан до тех пор, пока он не откроется ровно настолько, чтобы поддерживать установленное давление. Упрощенная схема «Схема регулятора давления» иллюстрирует это устройство баланса сил.(см. ниже)

(1) Элемент понижения давления (тарельчатый клапан)

Чаще всего регуляторы используют подпружиненный «тарельчатый» клапан в качестве ограничительного элемента. Тарельчатый клапан включает эластомерное уплотнение или, в некоторых конструкциях высокого давления, термопластическое уплотнение, которое выполнено с возможностью уплотнения на седле клапана. Когда сила пружины отодвигает уплотнение от седла клапана, жидкость может течь от входа регулятора к выходу. Когда давление на выходе увеличивается, сила, создаваемая чувствительным элементом, сопротивляется силе пружины, и клапан закрывается.Эти две силы достигают точки баланса в уставке регулятора давления. Когда давление на выходе падает ниже заданного значения, пружина отталкивает тарелку клапана от седла клапана, и дополнительная жидкость может течь от входа к выходу до тех пор, пока не будет восстановлен баланс сил.

(2) Чувствительный элемент (поршень или диафрагма)

Конструкции поршневого типа часто используются, когда требуется более высокое выходное давление, когда требуется повышенная прочность или когда выходное давление не должно поддерживаться в жестких пределах.Конструкция поршня имеет тенденцию быть медленной по сравнению с конструкцией диафрагмы из-за трения между уплотнением поршня и корпусом регулятора.

При низком давлении или когда требуется высокая точность, предпочтительнее использовать мембранный тип. В мембранных регуляторах используется тонкий дискообразный элемент, который используется для определения изменений давления. Обычно они изготавливаются из эластомера, однако в особых случаях используется тонкий извилистый металл. Мембраны существенно снижают трение, присущее поршневым конструкциям.Кроме того, для регулятора конкретного размера часто можно обеспечить большую зону чувствительности с помощью конструкции диафрагмы, чем это было бы возможно, если бы использовалась конструкция поршневого типа.

(3) Опорный силовой элемент (пружина)

Эталонным силовым элементом обычно является механическая пружина. Эта пружина воздействует на чувствительный элемент и открывает клапан. Большинство регуляторов имеют регулировку, которая позволяет пользователю регулировать заданное значение давления на выходе, изменяя силу, прилагаемую эталонной пружиной.

Точность и мощность регулятора

Точность регулятора давления определяется графиком зависимости давления на выходе от расхода. Полученный график показывает падение давления на выходе при увеличении расхода. Это явление известно как спад. Точность регулятора давления определяется как степень наклона устройства в диапазоне потоков; чем меньше спад, тем выше точность. Кривые зависимости давления от расхода, представленные на графике «Карта работы регулятора давления прямого действия», указывают на полезную регулирующую способность регулятора.При выборе регулятора инженеры должны изучить кривые зависимости давления от расхода, чтобы убедиться, что регулятор может соответствовать требованиям к рабочим характеристикам, необходимым для предлагаемого применения.

Определение падения

Термин «спад» используется для описания падения давления на выходе ниже исходного заданного значения при увеличении потока. Падение также может быть вызвано значительными изменениями давления на входе (от значения, когда был установлен выход регулятора). Когда давление на входе возрастает по сравнению с исходной настройкой, давление на выходе падает.И наоборот, когда давление на входе падает, давление на выходе растет. Как видно на графике «Карта работы регулятора давления прямого действия», этот эффект важен для пользователя, поскольку он показывает полезную регулирующую способность регулятора.

Размер отверстия

Увеличение отверстия клапана может увеличить пропускную способность регулятора. Это может быть полезно, если в вашей конструкции предусмотрен регулятор большего размера, однако будьте осторожны, чтобы не переусердствовать. Регулятор с клапаном увеличенного размера для условий предполагаемого применения приведет к большей чувствительности к колебаниям входного давления и может вызвать чрезмерное падение давления.

Давление блокировки

«Давление блокировки» — это давление выше заданного значения, необходимое для полного закрытия регулирующего клапана и обеспечения отсутствия потока.

Гистерезис

Гистерезис может возникать в механических системах, таких как регуляторы давления, из-за сил трения, вызванных пружинами и уплотнениями. Взгляните на график, и вы заметите, для данного расхода, что выходное давление будет выше при уменьшении расхода, чем при увеличении расхода.

Одноступенчатый регулятор

Одноступенчатые регуляторы — отличный выбор для относительно небольшого снижения давления. Например, воздушные компрессоры, используемые на большинстве заводов, создают максимальное давление в диапазоне от 100 до 150 фунтов на квадратный дюйм. Это давление проходит через завод, но часто снижается с помощью одноступенчатого регулятора до более низкого давления (10 фунтов на квадратный дюйм, 50 фунтов на квадратный дюйм, 80 фунтов на квадратный дюйм и т. Д.) Для работы автоматизированного оборудования, испытательных стендов, станков, оборудования для проверки герметичности, линейных приводов и другие устройства.Одноступенчатые регуляторы давления обычно не работают при больших колебаниях входного давления и / или расхода.

Двухступенчатый (двухступенчатый) регулятор

Двухступенчатый регулятор давления идеально подходит для приложений с большими колебаниями расхода, значительными колебаниями давления на входе или снижением давления на входе, например, с газом, подаваемым из небольшого резервуара для хранения или газового баллона.

Для большинства одноступенчатых регуляторов, за исключением тех, которые используют конструкцию с компенсацией давления, большое падение давления на входе вызовет небольшое увеличение давления на выходе.Это происходит из-за того, что силы, действующие на клапан, изменяются из-за большого падения давления с момента первоначальной настройки давления на выходе. В двухступенчатой ​​конструкции вторая ступень не будет подвергаться этим большим изменениям входного давления, а будет только небольшое изменение по сравнению с выходом первой ступени. Такое расположение обеспечивает стабильное давление на выходе из второй ступени, несмотря на значительные изменения давления, подаваемого на первую ступень.

Трехступенчатый регулятор

Трехступенчатый регулятор обеспечивает стабильное выходное давление, аналогичное двухступенчатому регулятору, но с дополнительной способностью выдерживать значительно более высокое максимальное входное давление.Например, трехступенчатый регулятор серии Beswick PRD3HP рассчитан на работу с входным давлением до 3000 фунтов на квадратный дюйм и обеспечивает стабильное выходное давление (в диапазоне от 0 до 30 фунтов на квадратный дюйм), несмотря на изменения давления питания. Небольшой и легкий регулятор давления, который может поддерживать стабильно низкое выходное давление, несмотря на давление на входе, которое со временем будет уменьшаться из-за высокого давления, является критическим компонентом во многих конструкциях. Примеры включают портативные аналитические инструменты, водородные топливные элементы, беспилотные летательные аппараты и медицинские устройства, работающие на газе под высоким давлением, подаваемом из газового баллона или баллона для хранения.

Теперь, когда вы выбрали регулятор, который лучше всего подходит для вашего применения, важно правильно установить и отрегулировать регулятор, чтобы обеспечить его правильную работу.

Большинство производителей рекомендуют установку фильтра перед регулятором (некоторые регуляторы имеют встроенный фильтр) для предотвращения загрязнения седла клапана грязью и твердыми частицами. Работа регулятора без фильтра может привести к утечке в выпускное отверстие, если седло клапана загрязнено грязью или инородным материалом.Регулируемые газы не должны содержать масел, смазок и других загрязнителей, которые могут загрязнить или повредить компоненты клапана или повредить уплотнения регулятора. Многие пользователи не знают, что газы, подаваемые в баллонах и небольших газовых баллончиках, могут содержать следы масел, оставшихся после производственного процесса. Присутствие масла в газе часто не очевидно для пользователя, поэтому эту тему следует обсудить с поставщиком газа, прежде чем выбирать материалы уплотнения для регулятора. Кроме того, газы не должны содержать чрезмерной влажности.В приложениях с высоким расходом может произойти обледенение регулятора при наличии влаги.

Если регулятор давления будет использоваться с кислородом, имейте в виду, что этот кислород требует специальных знаний для безопасного проектирования системы. Необходимо указать смазочные материалы, совместимые с кислородом, и обычно требуется дополнительная очистка для удаления следов смазочно-охлаждающих масел на нефтяной основе. Обязательно сообщите поставщику регулятора о том, что вы планируете использовать регулятор в кислородной системе.

Не подключайте регуляторы к источнику питания с максимальным давлением, превышающим номинальное давление на входе регулятора.Регуляторы давления не предназначены для использования в качестве запорных устройств. Когда регулятор не используется, давление питания должно быть отключено.

Установка

STEP 1
Начните с подключения источника давления к входному отверстию и линии регулируемого давления к выходному отверстию. Если порты не отмечены, обратитесь к производителю, чтобы избежать неправильного подключения. В некоторых конструкциях внутренние компоненты могут быть повреждены, если давление питания по ошибке подается на выпускное отверстие.

STEP 2
Перед включением давления питания регулятора, отвинтите ручку управления регулировкой, чтобы ограничить поток через регулятор. Постепенно увеличивайте давление питания, чтобы не «сотрясать» регулятор внезапным выбросом жидкости под давлением. ПРИМЕЧАНИЕ. Избегайте полностью закручивать регулировочный винт в регулятор, поскольку в некоторых конструкциях регуляторов полное давление подачи будет подаваться на выпускное отверстие.

STEP 3
Установите регулятор давления на желаемое давление на выходе.Если регулятор работает без сброса давления, будет легче отрегулировать давление на выходе, если жидкость течет, а не «тупиковый» (нет потока). Если измеренное давление на выходе превышает желаемое давление на выходе, выпустите жидкость со стороны выхода регулятора и уменьшите давление на выходе, повернув ручку регулировки. Никогда не выпускайте жидкость, ослабляя фитинги, так как это может привести к травме.

При использовании регулятора разгрузочного типа избыточное давление будет автоматически сбрасываться в атмосферу со стороны выхода регулятора, когда ручка поворачивается для понижения настройки выхода.По этой причине не используйте регуляторы разгрузочного типа с легковоспламеняющимися или опасными жидкостями. Убедитесь, что лишняя жидкость удалена безопасно и в соответствии со всеми местными, государственными и федеральными законами.

STEP 4
Чтобы получить желаемое давление на выходе, сделайте окончательные настройки, медленно увеличивая давление ниже желаемой уставки. Установка давления ниже желаемой настройки предпочтительнее, чем установка сверху желаемой настройки. Если вы превысили заданное значение при настройке регулятора давления, уменьшите заданное давление до точки ниже заданного значения.Затем снова постепенно увеличивайте давление до желаемой уставки.

STEP 5
Включите и выключите давление питания несколько раз, контролируя давление на выходе, чтобы убедиться, что регулятор постоянно возвращается к заданному значению. Кроме того, давление на выходе также следует периодически включать и выключать, чтобы регулятор давления вернулся к желаемой уставке. Повторите последовательность настройки давления, если давление на выходе не возвращается к желаемому значению.

Beswick Engineering специализируется на миниатюрных жидкостных и пневматических фитингах, быстроразъемных соединениях, клапанах и регуляторах. У нас есть команда опытных инженеров, готовых помочь вам с вашими вопросами. Индивидуальный дизайн доступен по запросу. Отправьте запрос на нашей странице «Связаться с нами» или щелкните значок чата в правом нижнем углу экрана.

Механические регуляторы давления | 8600 серии

Тип продукта

Механические регуляторы давления

Дифференциатор

Прямого действия, высокая точность

Дрейф

Менее 1% за первые пятнадцать минут, чтобы всего 1.5% на длительный срок

Диапазон давления

0-10 фунтов / кв. Дюйм / 0-0,7 бар до 0-200 фунтов / кв. Дюйм / 0-14 бар

Вместимость

Идеально подходит для использования при максимальном давлении воздуха до 1000 куб.см.

Максимальная температура

250 o F / 121 o C

Корпус

Стандарт: алюминий
Дополнительно: нержавеющая сталь 316

Технологические соединения

1/8 «NPT Внутренняя

1/4 «NPT Внутренняя

Цифровые регуляторы давления

| Электронные регуляторы давления

Управление по замкнутому контуру для высокотехнологичных приложений

Механические регуляторы давления обычно регулируются только вручную, что ограничивает удобство использования в высокотехнологичных приложениях.При использовании электронного регулятора давления с цифровой системой управления, такой как микроконтроллер или ПЛК, точное выходное давление можно контролировать динамически. Преобразователь внутреннего давления создает настоящее устройство управления с обратной связью и предлагает напряжение обратной связи текущего выходного давления. Считывая этот сигнал обратной связи от электронного регулятора, системы управления могут вносить корректировки в реальном времени, значительно улучшая согласованное регулирование давления в самых требовательных приложениях.

Продукция для регулирования давления от Kelly Pneumatics

Мы производим как электронные регуляторы давления, так и предохранительные клапаны.Наши регуляторы давления доступны в конструкциях с низким и высоким расходом и выдерживают давление от вакуума до 100 фунтов на квадратный дюйм. Наш электронный предохранительный клапан работает в диапазоне от 1 до 100 фунтов на квадратный дюйм.

Наш электронный регулятор давления может быть сконфигурирован для использования либо внешнего динамического входного сигнала, либо встроенного потенциометра с регулируемой уставкой. Доступны варианты для сигналов управления / обратной связи 0-5 или 0-10 В. Входная мощность может быть 12 или 24 В.

Наш регулятор давления с высоким расходом рассчитан максимум на 515 л / мин / 18.2 стандартных кубических фута в минуту. Регулятор низкого расхода имеет верхний предел 6 ст. / Мин. / 0,25 ст. Куб. Футов в минуту. Предохранительный клапан также работает на скорости до 515 л / мин / 18,2 ст. Куб. Футов в минуту. (Все потоки при 100 фунтах на квадратный дюйм.) Регуляторы предназначены для выходного давления в диапазоне от -14,7 до более чем 100 фунтов на квадратный дюйм.

Доступно несколько типов гидравлических соединений, подходящих для предполагаемого применения. Регуляторы низкого расхода могут быть указаны с трубными обжимными фитингами 1/8 ″ FPT, 1/4 ″ FPT, 5/32 ″ OD или портами # 10-32 с внутренней резьбой. Регуляторы высокого расхода имеют опциональные порты подачи и выпуска из FPT 1/8 ″ или 1/4 ″ или выпускное отверстие с внутренней резьбой # 10-32.Клапан сброса давления может быть сконфигурирован с соединениями 1/8 ″ FPT или 1/4 ″ FPT.

Цифровой регулятор давления высшего качества

Цифровые регуляторы давления Kelly Pneumatics с использованием запатентованной технологии обеспечивают исключительное пропорциональное регулирование выходного давления с замкнутым контуром. Быстрый отклик в сочетании с высоким разрешением, повторяемостью и превосходной линейностью обеспечивает стабильность, необходимую для процессов, чувствительных к изменению давления.Узнайте больше о наших цифровых регуляторах давления, связавшись с Kelly Pneumatics сегодня.

Общие сведения о характеристиках регуляторов давления

Регуляторы воздуха представляют собой редукционные клапаны. Они поддерживают постоянное давление на выходе независимо от колебаний давления на входе или скорости потребления воздуха. Конечно, это верно только в том случае, если давление на входе больше, чем давление на выходе.

Есть два типа регуляторов давления: сбросные и нернагрузочные. Регуляторы сброса давления будут выпускать газ ниже по потоку, если давление ниже по потоку поднимется выше уставки давления регулятора. Регуляторы сброса давления не следует путать с клапанами сброса давления, которые представляют собой предохранительные клапаны, используемые для защиты системы от состояния избыточного давления. По большей части, регуляторы сбросного давления используются в пневматических системах для питания приводов, пневматических инструментов, распылительного оборудования и продувочных форсунок.Регуляторы давления без сброса давления используются там, где утечка газа или жидкости запрещена, поскольку это может создать опасность. Например, выпуск в атмосферу горючих газов, таких как пропановое топливо, кислород (окислитель, поддерживающий горение) и инертных газов, таких как азот, представляет опасность.

В регуляторе, показанном на рис. 1, регулировочная ручка регулирует давление на выходе. Вращение ручки по часовой стрелке увеличивает сжатие пружины в верхней камере, увеличивая настройку выходного давления.Вращение ручки против часовой стрелки уменьшает сжатие пружины, уменьшая выходное давление за счет уменьшения предварительной нагрузки на диафрагму. Мембрана, измеряющая давление на выходе, регулирует давление на выходе. Давление ниже по потоку действует на нижнюю часть мембраны, которая затем действует вверх на главную пружину в верхней камере. Когда давление на выходе равно настройке, управляемой основной пружиной в верхней камере, пружина клапана в нижней камере закрывает клапан.Когда давление на выходе падает, пружина в верхней камере открывает клапан, прикладывая направленную вниз силу к штифту клапана. Таким образом, давление уравновешивается давлением на выходе, действующим против предварительной нагрузки, установленной на главной пружине с помощью ручки регулировки.

Регулятор сброса давления регулирует поток, чтобы поддерживать заданное давление на выходе. Помните, что давление возникает из-за сопротивления потоку, обычно вызванного сопротивлением нагрузки. Повышенное давление на выходе также может быть вызвано силой, действующей против привода, увеличением температуры воздуха на выходе или снижением настройки давления регулятора.По мере увеличения давления за регулятором поток через регулятор модулируется для поддержания установленного давления. Давление измеряется на выпускном отверстии регулятора. Когда давление на выходе увеличивается, диафрагма прижимается вверх к пружине в верхней камере, поднимая ее со штифта, который находится под отверстием. Это позволяет выходящему воздуху выходить в верхнюю камеру регулятора, а затем через небольшое отверстие сбоку в корпусе регулятора в атмосферу.В этот момент поток воздуха из входного отверстия регулятора перекрывается. Независимо от причины повышенного давления на выходе, давление на выходе никогда не должно быть больше, чем давление, установленное на регуляторе. Это не относится к регулятору давления без сброса давления.

Предположим на мгновение, что предохранительный регулятор подключен к источнику питания 120 фунтов на квадратный дюйм, а регулятор настроен на 80 фунтов на квадратный дюйм. Если настройка сброшена на 60 фунтов на квадратный дюйм, регулятор будет выпускать достаточно воздуха на выходе, чтобы снизить давление в контуре до 60 фунтов на квадратный дюйм.

Регуляторы давления без сброса давления ограничивают поток токсичных или легковоспламеняющихся газов, которые могут создать опасность для персонала или имущества, если они будут выброшены в атмосферу. Даже выброс инертного газа, такого как азот, представляет опасность, если он попадает в жилую зону, потому что азот может вытеснить кислород до уровня ниже необходимого для поддержания жизни. Как и в случае с разгрузочными регуляторами, давление измеряется на стороне выхода регулятора. Если настройка давления снижается или давление на выходе увеличивается по какой-либо причине, газ с избыточным давлением не будет выходить в атмосферу.Газ из контура не теряется.

Precision: Регуляторы стандартного класса будут поддерживать управляющее давление в пределах от двух до пяти фунтов на квадратный дюйм во время нормальной работы при изменении потребности в потоке воздуха. Прецизионный регулятор будет поддерживать давление с отклонениями менее 0,5 фунта на квадратный дюйм. Прецизионный регулятор будет постоянно стравливать небольшое количество воздуха, чтобы клапан потока оставался открытым и активным. Это также гарантирует, что любое противодавление будет немедленно сброшено, вместо того, чтобы увеличивать давление выше установленного, чтобы открыть вентиляционное отверстие регулятора сбросного типа.Прецизионный регулятор будет использоваться в приложениях, где потребность в предельной точности давления, например, в управлении натяжением бумажного валика, перевешивает стоимость небольшого непрерывного стравливания воздуха.

Совет по безопасности и энергии: Для предотвращения избыточного давления, которое может повредить машину или создать угрозу безопасности, следует использовать устойчивый к взлому или блокируемый регулятор. Блокировка также может предотвратить произвольное увеличение настройки давления, которое может привести к потере лишнего воздуха.

Регуляторы вакуума работают наоборот, чем традиционный регулятор. Вход регулятора — это управляемый порт. Выходящий из регулятора воздушный поток с более низким давлением втягивается в вакуумный насос. Когда установка технологического вакуума будет достигнута, регулятор вакуума закроется, блокируя любой дополнительный поток в линии подачи вакуума. Если абсолютное давление в технологическом порте превышает установленное, клапан открывается, позволяя воздуху выходить из технологической линии в вакуумную линию.

Прерыватель вакуума отличается от регулятора вакуума тем, что он позволяет атмосферному воздуху попадать в технологическую линию. В результате вакуумный насос должен будет удалить дополнительный воздух для увеличения вакуума.

Энергетический наконечник: Чрезмерные перепады давления могут наблюдаться на манометре регулятора. Если они наблюдаются, выясните первопричины и устраните их. Распространенные причины — засорение фильтров или малоразмерные компоненты.

Регуляторы электропневматические, как показано на рис.2, используются в приложениях, которые выиграют от регулировки давления воздуха в зависимости от функций машины. Электропневматический регулятор обычно имеет два электромагнитных клапана, подключенных к технологической линии. На один из клапанов подается основной воздух. Другой клапан соединяет линию технологического воздуха с выпуском. Регулятор будет поддерживать управляющее давление, пропорциональное электрическому управляющему сигналу. Если давление ниже установленного, клапан на впускной стороне открывается, позволяя подавать давление в технологический порт.Если технологическое давление выше установленного, выпускной клапан откроется, чтобы позволить технологическому воздуху выйти.

Эффективность при более низком давлении: Объем воздуха, потребляемого при циклическом цикле цилиндра, является функцией давления в цилиндре после завершения хода и размера цилиндра. Если давление воздуха составляет 100 фунтов на квадратный дюйм, объем свободного воздуха в 7,8 раз превышает объем цилиндра. Однако, если бы для расширения цилиндра требовалась только половина давления, а настройка давления регулятора была бы уменьшена до 50 фунтов на квадратный дюйм, то количество свободного воздуха было бы только 4.В 4 раза больше объема цилиндра (см. Уравнение 1).

Энергетический совет: Рекомендуется использовать минимальное давление для выполнения задачи. Избегайте соблазна увеличить настройку регулятора.

Эффективность при использовании двойного давления: В большинстве случаев сила цилиндра требуется только в одном направлении. Давление, необходимое для втягивания цилиндра, ограничивается механическим сопротивлением привода.Использование отдельного регулятора воздуха на нерабочем ходе цилиндра, настроенного на давление, необходимое только для его втягивания, обеспечит дополнительную экономию, которая быстро компенсирует добавленную стоимость регулятора и водопровода (см. Рис. 3).

Энергетическая подсказка: Обычно, если нерабочий ход может работать при половине рабочего давления, экономия энергии составит примерно 25% за цикл.

Регулятор с дистанционным управлением: Регуляторы с дистанционным управлением используются, когда существует потребность в регулируемом регулировании давления в удаленном месте, а электронные регуляторы нецелесообразны.Регуляторы с пилотным управлением также используются в приложениях, где требуются высокие скорости потока или более высокое давление. Вместо использования механической ручки регулировки пружины, нажимающей на внутреннюю диафрагму, регуляторы с дистанционным управлением используют другой источник давления воздуха для воздействия на диафрагму. Пилотная камера может иметь большую рабочую площадь для создания пилотного отношения больше 1, поэтому низкое управляющее давление может пропорционально регулировать гораздо более высокое рабочее давление.

ПРОВЕРЬТЕ СВОИ НАВЫКИ

1.Для какого из следующих газов можно использовать предохранительный регулятор для регулирования давления?

а. Воздух
б. Пропан
гр. Кислород
d. Аргон
e. Азот

2. Какой регулятор лучше всего подходит для применения, в котором требуется постоянная регулировка давления, например, функция натяжения?

а. Электропневматический
б. Пылесос
c. Обратный поток
d. Пилотируемый воздух
e. Без разгрузки

Каковы правильные решения?

Tagged Fluid Power Education, ifps, регуляторы давления, наконечники

Самодействующие регуляторы давления и приложения

Клапаны поддержания давления

В некоторых случаях требуется, чтобы давление на входе измерялось и контролировалось, и этот тип клапана часто называют «клапаном поддержания давления» или «PMV».Клапаны поддержания давления также известны как избыточные клапаны или перепускные клапаны в определенных областях применения.

Примером применения PMV может быть парогенератор недостаточного размера, но поток пара имеет решающее значение для процесса. Если потребность в паре превышает мощность котла или резко возрастает при выключенной горелке котла, давление в котле упадет; все более влажный пар будет подаваться на установку, и работа котла может быть нарушена. Если котел может работать при расчетном давлении, оптимальное качество пара будет поддерживаться.

Это может быть достигнуто путем установки PMV на каждом некритическом приложении (например, на отопительной установке или установке горячего водоснабжения), тем самым внося контролируемое разнообразие в установку. Затем они будут постепенно отключаться, если давление на входе падает, отдавая приоритет основным услугам. Если все расходные материалы считаются необходимыми, доступны различные варианты, каждый из которых имеет свои финансовые последствия.

Самым дешевым решением может быть установка PMV на выходе пара из котла (см. PMV 1 на Рисунке 7.3.7). Это будет поддерживать минимальное давление пара в котле, регулировать максимальный поток из котла и, таким образом, сохранять пар хорошего качества в установке.

Если есть возможность отключить второстепенное оборудование во время пиковых нагрузок, PMV можно установить на распределительных линиях или ответвлениях, питающих эти зоны завода. Когда паровой котел становится перегруженным, второстепенные источники питания постепенно отключаются с помощью PMV 2, позволяя котлу поддерживать поток пара в «важную» установку при надлежащем давлении.

Следует признать, что PMV не всегда решает проблемы, вызванные недостаточной мощностью котла. Иногда при небольшом разнообразии растений доступна только одна реальная альтернатива — увеличить генерирующую мощность за счет добавления еще одного котла.

Однако бывают случаи, когда возможна более дешевая альтернатива паровому аккумулятору. Это позволяет накапливать избыточную энергию котла в периоды низкой нагрузки. Когда котел перегружен, аккумулятор увеличивает мощность котла, обеспечивая контролируемый выпуск пара в установку (см. Рисунок 7.3.8).

На рис. 7.3.8 котел спроектирован для выработки пара под давлением 10 бар изб., Который распределяется как при давлении 10, так и 5 бар изб. Для остальной части установки.

PRV 1 — это редукционный клапан, рассчитанный на пропускную способность котла за вычетом нагрузки пара высокого давления.

Для определения размеров емкость редукционного клапана PRV 2 должна равняться максимальной скорости нагнетания и времени, в течение которых гидроаккумулятор рассчитан на работу, в то время как перепад давления для расчетных целей должен быть разницей между минимальным рабочим давлением гидроаккумулятора и давление распределения LP (низкого давления).В этом примере PRV 2, вероятно, будет настроен на открытие примерно при 4,8 бар изб.

PMV — это клапан поддержания давления, размер которого определяется временем перезарядки, требуемым гидроаккумулятором, и имеющейся избыточной мощностью котла во время перезарядки. При перезарядке перепад давления на PMV, вероятно, будет относительно небольшим, поэтому PMV, вероятно, будет довольно большим, обычно такого же размера, как линия, в которой он установлен. PMV обычно настраивается на работу чуть ниже максимального давления котла.

Когда общая нагрузка установки находится в пределах мощности котла, PRV 2 закрывается, и котел подает паровую нагрузку низкого давления через PRV 1, который настроен на управление немного выше, чем PRV2. Любой избыток пара, имеющийся в котле, приведет к тому, что давление в котле поднимется выше уставки PMV, и PMV откроется для зарядки аккумулятора. Перезарядка будет продолжаться до тех пор, пока давление в аккумуляторе не сравняется с давлением в бойлере, или пока нагрузка на установку не станет такой, что давление в бойлере снова упадет ниже уставки PMV.

Если паровая нагрузка НД продолжает увеличиваться, в результате чего давление НД падает ниже уставки PRV 2, PRV 2 открывается для подачи пара из аккумулятора, который, в свою очередь, дополняет пар, проходящий через PRV 1.

Существует несколько способов проектирования аккумуляторной установки; каждый из них будет зависеть от обстоятельств и повлечет за собой финансовые последствия. Тема аккумуляторов более подробно обсуждается в Модуле 3.22 «Паровые аккумуляторы».

Как работает регулятор давления воздуха ~ Изучение контрольно-измерительной техники

Пользовательский поиск

В пневматических контрольно-измерительных системах приборный воздух требуется для питания приводов клапанов и других инструментов — датчиков, контроллеров, регулирующих клапанов и т. Д.Ключевым компонентом системы подачи воздуха в КИП является регулятор давления воздуха. Регулятор давления воздуха представляет собой простое устройство. Он используется для понижения основного источника воздуха для КИП оборудования до давления, подходящего для приборов с пневматическим приводом; например, преобразователь, регулирующий клапан и т. д.

Обычно каждый прибор с пневматическим приводом имеет свой собственный регулятор. Таким образом, воздушный регулятор — одно из самых распространенных устройств на заводе. Существуют различные производители регуляторов воздуха, например Masoneilan и Fisher.Однако все они работают примерно одинаково. Схема регулятора давления воздуха Fisher показана ниже:

Принцип действия регулятора давления воздуха

  1. Основная подача воздуха подключена к ВПУСКНОМУ ОТВЕРСТИЮ ВОЗДУХА . Воздух проходит в фильтрующую камеру в нижней части регулятора.
  2. Воздух проходит через фильтр, который удаляет частицы грязи из поступающего воздуха, которые могут блокировать сопла и т. Д. Затем он попадает в клапанный узел.
  3. Клапан в сборе перемещается пружиной диапазона, нажимающей на диафрагму.
  4. Пружина диапазона будет удерживать клапан в сборе до тех пор, пока выходное давление не станет достаточно высоким, чтобы поднять диафрагму (через показанный воздушный канал). В этот момент маленькая пружина в клапанном узле закрывает клапан.
  5. Воздух может проходить через отверстие в центре диафрагмы и выходить из вентиляционного отверстия. Это поддерживает сбалансированное давление на диафрагме.
  6. Если давление на выходе выше давления, установленного пружиной диапазона, воздух будет выходить через вентиляционное отверстие над диафрагмой.Когда давление на выходе правильное, клапан в сборе открывается для установки правильного давления. Это давление выходит из регулятора через ВЫПУСКНОЙ ВОЗДУШНЫЙ ПОРТ
  7. .

  8. Если давление на выходе ниже давления, установленного пружиной диапазона, клапан в сборе будет оставаться открытым до тех пор, пока не будет достигнуто заданное давление.

Руководство по выбору регуляторов давления воздуха

: типы, характеристики, применение

Регуляторы давления воздуха регулируют давление в воздушных линиях, используемых в пневматических инструментах и ​​машинах.Чтобы обеспечить постоянное давление, они устраняют колебания подачи воздуха и регулируются. Снижение давления — ключевая характеристика регуляторов давления; давление на выходе всегда меньше давления на входе. Области применения регуляторов давления воздуха значительно различаются. Регуляторы давления воздуха используются во многих распространенных областях, таких как газовые грили, контроль давления пропана, а также в медицинском / стоматологическом оборудовании для регулирования кислорода и газов для анестезии.

В состав входят три функциональных элемента: регулятор давления.Элемент понижения давления, чувствительный элемент и элемент опорной силы. При работе силовой элемент создает силу, открывающую редукционный элемент. Давление, введенное во входное отверстие, затем проходит через клапан и давит на чувствительный элемент. Регулируемое давление действует на чувствительный элемент, создавая силу, противодействующую силе пружины, и закрывает клапан.

Чувствительным элементом чаще всего является поршень или диафрагма. Поршни лучше всего подходят для более высоких выходных давлений и когда выходные давления не выдерживаются в жестких пределах.Мембраны используются для повышения точности при низком давлении.

Типы

Существует несколько типов регуляторов давления воздуха.

  • Регуляторы общего назначения предназначены для типичного промышленного использования и работают при давлении выше атмосферного.

  • Регуляторы высокого давления рассчитаны на входное давление более 1000 фунтов на квадратный дюйм, а регуляторы низкого давления работают при давлениях ниже 15–20 фунтов на квадратный дюйм.

  • В двухступенчатых регуляторах жидкость протекает через последовательные камеры, так что постоянное давление поддерживается даже при понижении давления на входе.

  • Регуляторы в месте использования прикрепляются к инструменту или устройству или рядом с ними.

Дополнительные описания типов регуляторов можно найти здесь.

Технические характеристики

Требования к давлению и расходу

При выборе регулятора давления воздуха важно учитывать диапазон колебаний входного давления, а также требуемое выходное давление.Также следует учитывать возможное изменение скорости потока, чтобы гарантировать, что регулятор не откажет в желаемом применении. Слишком большое или слишком маленькое давление может привести к неисправности регулятора.

Регулировка

Регуляторы давления воздуха

обеспечивают несколько методов регулировки. В ручных регуляторах обычно используются ручки или Т-образные ручки. Аналоговые регуляторы напряжения охватывают такие диапазоны, как 0–5 В и 0–10 В, тогда как аналоговые регуляторы тока предназначены для токовых контуров, таких как 4–20 мА.Пневматические регуляторы регулировки или «усилители объема» управляют подачей воздуха. Некоторые элементы управления настройкой включают последовательные, параллельные или цифровые интерфейсы.

Дополнительные настройки можно выполнить, изменив размер отверстия. Увеличение размера порта клапана может увеличить поток. Если отверстие порта становится слишком большим, это может вызвать колебания входного давления (чрезмерное падение / подъем).

Точность

Точность регулятора проверяется путем построения графика зависимости давления на выходе от расхода.Полученная диаграмма показывает уменьшение выходного давления по мере увеличения расхода, явление, известное как спад. Спад дополнительно определяется как падение давления на выходе ниже заданного значения по мере увеличения расхода. Точность и пропускная способность отмечаются величиной спада для данного диапазона потоков. Перед выбором регулятора давления необходимо внимательно изучить график рабочих характеристик, чтобы убедиться, что регулятор соответствует требованиям к рабочим характеристикам.

Варианты монтажа

Есть несколько способов установки регуляторов давления воздуха.

  • Регуляторы на картриджах вставляются, ввинчиваются или вставляются на место, чтобы операторы могли их снять и получить доступ к компонентам клапана.

  • Модули с несколькими клапанами складываются в сборку и содержат пути потока интегральной схемы для уменьшения количества трубопроводов системы.

Материалы

В регуляторах давления воздуха

используются различные материалы корпуса.

Полимеры ацеталя обладают превосходной смазывающей способностью и обеспечивают как усталостную, так и химическую стойкость.Пластмассы подходят для многих медицинских процедур, связанных с жидкостями организма. Они часто идеально подходят для одноразовых приложений.

Алюминий очень легкий, устойчивый к окислению и имеет хорошую электрическую и теплопроводность.

Латунь также обеспечивает хорошую проводимость, а также отличную пластичность при высоких температурах и приемлемую пластичность на холоде.

Чугун состоит в основном из железа, но также имеет важные следовые количества углерода и кремния.

Сталь , товарный чугун, содержащий углерод в качестве основного легирующего компонента, содержит меньше углерода, чем чугун, и является ковким.

Нержавеющая сталь устойчива к химическим и коррозионным воздействиям и рассчитана на высокое давление. Это лучший материал для чистых помещений и агрессивных жидкостей.

Цинк , кристаллический металлический элемент, становится пластичным при небольшом нагреве, но хрупким при обычных температурах.

Латунь, алюминий и пластик — наименее дорогие варианты.

Некоторые регуляторы давления воздуха оснащены внутренним манометром или спускным клапаном для сброса давления. Другие имеют встроенный фильтр для забора жидкости или присоединенный лубрикатор для работы клапана. Регуляторы давления воздуха с защитой от несанкционированного доступа имеют защитные устройства, такие как замки, для предотвращения нежелательной регулировки.

Стандарты

Регуляторы давления воздуха

должны соответствовать определенным стандартам для обеспечения надлежащего дизайна и функциональности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *